首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   11篇
电工技术   1篇
化学工业   53篇
金属工艺   2篇
机械仪表   6篇
建筑科学   5篇
能源动力   11篇
轻工业   21篇
无线电   16篇
一般工业技术   19篇
冶金工业   8篇
自动化技术   11篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   17篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   6篇
  2002年   3篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1988年   1篇
  1979年   2篇
  1965年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
41.
Boron doped poly(vinyl) alcohol/ bismuth - lanthanum acetate (PVA/Bi-La) nanofibers were prepared by electrospinning using PVA as a precursor. The effect of boron doping was investigated in terms of solution properties, morphological changes and thermal characteristics. The fibers were characterized by FT-IR, XRD, SEM and BET. The addition of boron did not only increase the thermal stability of the fibers, but also their diameters, which yielded stronger fibers. XRD analyses showed that boron doping increased the peak intensities and indicated that the boron doping enhanced the crystallite size. Moreover, no shifts were noticed in diffraction angles for boron doped and undoped samples. Therefore, boron doping did not significantly alter the lattice spacing. The SEM micrograph of the fibers showed that the addition of boron resulted in the formation of cross linked bright surfaced fibers. Also, grain diameters of boron doped and undoped nanocrystalline sintered powders were measured as 170 nm and 120 nm respectively. The BET results show that boron undoped and doped Bi2O3-La2O3 nanocrystalline powder ceramic structures sintered at 800 °C have surface areas of 20.44 m2/g and 12.93 m2/g, respectively.  相似文献   
42.
The fatty acid compositions of flowering tops of Hypericum perforatum L. and Hypericum retusum Aucher (Guttiferae) were analyzed by gas chromatography and gas chromatography‐mass spectrometry. The major components were C16:0 (24.87%), C18:3 n‐3 (21.94%), 3‐OH‐C18:0 (18.46%) and 3‐OH‐C14:0 (14.22%) for H. perforatumL. and 3‐OH‐C14:0 (28.29%), C18:0 (16.47%) and C16:0 (14.17%) for H. retusum Aucher. Besides widespread plant fatty acids, 3‐hydroxy fatty acids, namely 3‐hydroxytetradecanoic acid (3‐OH‐C14:0) and 3‐hydroxyoctadecanoic acid (3‐OH‐C18:0) were also obtained.  相似文献   
43.
The present work proposes to fabricate a composite hydrogel material that well characterized, transparent, biocompatible, and self‐antibacterial as potential soft contact lens material. For this purpose, poly(2‐hydroxyethyl methacrylate) (PHEMA)/boric acid (BA) composite hydrogels were successfully prepared by chemical crosslinking with BA through in situ polymerization using different BA ratios between 1 and 10% w/w. Afterward, the compositions, thermal stability, transparence, oxygen permeability, water uptake capacity, swelling ratio as well as morphological and rheological properties, in vitro degradability, in vitro cytotoxicity, and antibacterial properties of the all prepared materials were analyzed using a series of different techniques. The thermal stability, hydrophilicity, water uptake, oxygen permeability gradually increased depending ratio of BA, which is desirable for biomaterial. While the transparence and refractive index decreased, the composite hydrogels, except for BA content of 10 wt %, maintained enough transparency to be used for contact lens. In addition, PHEMA/BA composite hydrogels exhibited good cytocompatibility (PHEMA‐1%BA and PHEMA‐3%BA) and excellent antibacterial activity against Gram‐positive (Staphylococcus aureus and Enterococcus faecium) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Overall, the results demonstrated that the obtained PHEMA/BA composite hydrogels could be considered as self‐antibacterial contact lens and a potential composite biomaterial for other applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46575.  相似文献   
44.
Atomically detailed models of gas mixture diffusion through CuBTC membranes   总被引:1,自引:0,他引:1  
Metal–organic frameworks are intriguing crystalline nanoporous materials that have potential applications in adsorption-based and membrane-based gas separations. We describe atomically detailed simulations of gas adsorption and diffusion in CuBTC that have been used to predict the performance of CuBTC membranes for separation of H2/CH4, CO2/CH4 and CO2/H2 mixtures. CuBTC membranes are predicted to have higher selectivities for all three mixtures than MOF-5 membranes, the only other metal–organic framework material for which detailed predictions of membrane selectivities have been made. Our results give insight into the physical properties that will be desirable in tuning the pore structure of MOFs for specific membrane-based separations.  相似文献   
45.
In this study, bismuth doped 45S5 nanobioactive bioglass (nBG) and graphene oxide (GO) nanocomposites were developed and characterized in terms of microstructural, mechanical, bioactivity and biological properties. Bismuth (Bi) - doped nBG was synthesized by sol-gel method and sintered at 600 °C for 2 h. Nanosized GO was homogeneously mixed with Bi doped bioglass at various ratios to prepare nanocomposites. Addition of Bi increased the density of nBG samples while a considerable decrease in density was observed for nanocomposites with GO incorporation. Bi improved the diametral tensile strength of nBG and addition of 2.5% GO to the composite also increased the diametral tensile strength of the nanocomposites. However, addition of more than 2.5% GO had negative effect on the diametral tensile strength of the composites. Bi doping to bioglass and its composite with GO increased the biocompatibility of 45S5 nBG in which 96.5BG1Bi2.5GO (containing 96.5% BG 1% Bi 2.5% GO in weight ratio) showed highest cell viability. Overall, it can be concluded that composites of Bi doped 45S5 nBG with GO hold promise as biomaterial for biomedical applications.  相似文献   
46.
Whether knowledge-based intra-molecular inter-residue potentials are valid to represent inter-molecular interactions taking place at protein-protein interfaces has been questioned in several studies. Differences in the chain connectivity effect and in residue packing geometry between interfaces and single chain monomers have been pointed out as possible sources of distinct energetics for the two cases. In the present study, the interfacial regions of protein-protein complexes are examined to extract inter-molecular inter-residue potentials, using the same statistical methods as those previously adopted for intra-molecular residue pairs. Two sets of energy parameters are derived, corresponding to solvent-mediation and "average residue" mediation. The former set is shown to be highly correlated (correlation coefficient 0.89) with that previously obtained for inter-residue interactions within single chain monomers, while the latter exhibits a weaker correlation (0.69) with its intra-molecular counterpart. In addition to the close similarity of intra- and inter-molecular solvent-mediated potentials, they are shown to be significantly more residue-specific and thereby discriminative compared to the residue-mediated ones, indicating that solvent-mediation plays a major role in controlling the effective inter-residue interactions, either at interfaces, or within single monomers. Based on this observation, a reduced set of energy parameters comprising 20 one-body and 3 two-body terms is proposed (as opposed to the 20 x 20 tables of inter-residue potentials), which reproduces the conventional 20 x 20 tables with a correlation coefficient of 0.99.  相似文献   
47.
We examine a generalized vendor selection problem of a multi-store firm where the goal is the simultaneous determination of (i) the set of vendors the firm should work with and (ii) how much each store should order from the selected vendors. In addition to the typical costs associated with vendor selection and delivery between the vendors and their assigned stores, we explicitly consider the inventory-related costs and decisions of the stores. We emphasize the relationship between facility location applications and the problem at hand, and we propose an integrated vendor selection and inventory optimization model. Also, arguing that our model creates a venue for precise incorporation of realistic capacity constraints, we model throughput and dispatch capacities, explicitly. The model is a challenging mixed integer nonlinear program for which we propose an efficient solution approach that relies on Generalized Benders Decomposition (GBD).  相似文献   
48.
49.
Sericin, a silk protein, has high potential for use in biomedical applications. In this study, wound dressing membranes of Sericin (S) and Collagen (C) were prepared by glutaraldehyde cross-linking at S/C; 2:1, 1:1, 1:2, and 0:1 weight ratios. They were stable in water for 4 weeks. However, increasing the proportion of sericin had decreasing effect on the membrane stability. Water swelling property of membranes was enhanced with sericin. The highest water swelling was obtained in 1:1 group (9.06 g/g), but increasing collagen or sericin content in the membranes had a diminishing effect. Highest water vapor transmission rate was obtained with 1:2 group (1013.80 g/m2/day). Oxygen permeability results showed that 1:2 (7.67 mg/L) and 2:1 (7.85 mg/L) S/C groups were better than the other groups. While sericin decreased the tensile strength and elongation of membranes, it increased modulus. Sericin also increased brittleness of membranes, but their UTS range (24.93–44.92 MPa) was still suitable for a wound dressing. Membranes were not penetrable to microorganisms. Cytotoxicity studies showed that fibroblasts and keratinocytes attached and gained their characteristic morphologies. They also proliferated on membranes significantly. After 1 week of subcutaneous implantation, a fibrous capsule formed around all membranes with an acute inflammation. Sericin containing membranes showed signs of degradation (at 2nd week), while collagen only membranes remained largely intact. Eventually, sericin containing membranes degraded in 3 weeks with moderate inflammatory response. Overall results suggest that sericin/collagen membranes would be favorable as wound dressing material when sericin ratio is less than or equal to the collagen component.  相似文献   
50.
Ceramic ring and pumice stone were used as a support matrix for the enhancement of biohydrogen production in immobilized cell culture systems. The reactors were continuously operated for the hydrogen fermentation using sucrose as the major carbon source at varying hydraulic retention times (HRT) as an important operational factor. In terms of volumetric hydrogen production, the best value was obtained with ceramic ring at 1.5 h HRT (2.98 l H2/l/d), on the other hand, the pumice stone packed reactor resulted in 30% less volumetric hydrogen production (2.28 l H2/l/d) at two fold longer retention time (HRT 3 h). It was demonstrated that volumetric hydrogen production with the immobilized bioreactor configurations was 6 fold better than the suspended culture bioreactor configuration (CSTR). Furthermore, up to 4 mol and 5 mol hydrogen yields per mole of sucrose used (which are 62.5% and 50% of the theoretical values) were achieved by pumice stone and ceramic ring packed reactors, respectively, whereas suspended culture system yielded only 0.5 mol H2/mol sucrose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号