Proxy Mobile IPv6 (PMIPv6) is a network based mobility protocol which has been designed to relieve the mobile nodes (MNs) from participating in the mobility process and to reduce the long handoff latency of the MIPv6 protocol. However, PMIPv6 incurs a long communication path due to the triangle routing problem, in which, all packets sent by MNs are obligated to pass through the local mobility anchor. Several solutions have been proposed to mitigate this issue. However, they still incur high signaling overhead to recover the Route Optimization (RO) status after handoff. In this paper, we propose a Cluster-Based RO (CBRO) scheme for the clustered architecture of the PMIPv6, in which, the Mobile Access Gateways (MAGs) are grouped into clusters with a distinguished Head MAG (HMAG) for each. In the proposed CBRO, the RO process is relied on the HMAGs to reduce the handoff latency while achieving a fast recovery of the optimized path after handoff. The proposed CBRO is evaluated analytically and compared with the basic PMIP and the current RO schemes. The obtained numerical results have shown that the proposed CBRO outperforms all other schemes in terms of signaling cost required to recover the RO status after handoff and the total cost performance metrics. 相似文献
Organic–inorganic hybrid materials are of significant interest owing to their diverse applications ranging from photovoltaics and electronics to catalysis. Control over the organic and inorganic components offers flexibility through tuning their chemical and physical properties. Herein, it is reported that a new organic–inorganic hybrid, [Mn(C2H6OS)6]I4, with linear tetraiodide anions exhibit an ultralow thermal conductivity of 0.15 ± 0.01 W m?1 K?1 at room temperature, which is among the lowest values reported for organic–inorganic hybrid materials. Interestingly, the hybrid compound has a unique 0D structure, which extends into 3D supramolecular frameworks through nonclassical hydrogen bonding. Phonon band structure calculations reveal that low group velocities and localization of vibrational energy underlie the observed ultralow thermal conductivity, which could serve as a general principle to design novel thermal management materials. 相似文献
HIGHT is a lightweight block cipher introduced in CHES 2006 by Hong et al as a block cipher suitable for low‐resource applications. In this paper, we propose improved impossible differential and biclique attacks on HIGHT block cipher both exploiting the permutation‐based property of the cipher's key schedule algorithm as well as its low diffusion. For impossible differential attack, we found a new 17‐round impossible differential characteristic that enables us to propose a new 27‐round impossible differential attack. The total time complexity of the attack is 2120.4 where an amount of 259.3 chosen plaintext‐ciphertext pairs and 2107.4 memory are required. We also instantiate a new biclique cryptanalysis of HIGHT, which is based on the new idea of splitting each of the forward and backward keys into 2 parts where the computations associated to each one are performed independently. The time complexity and data complexity of this attack are 2125.7 and 242, respectively. To the best of our knowledge, this is the fastest biclique attack on full‐round HIGHT. 相似文献
A novel two-step knowledge-based exploratory framework is proposed in this paper for studying quality of Italian mobile telecommunication services (MTSs). Particularly, the Delphi technique is initially considered to finalize an overall quality structure of MTSs features, indicators and drivers, herein described on the basis of a comprehensive review of the fundamental references for the field, and also to select the key elements with reference to the Italian context. At the second step, selected key elements are prioritized via the analytic hierarchical process method according to viewpoints of the fundamental stakeholders for the sector. Furthermore, possible uncertainty and ambiguity of involved experts at this step of the study are addressed via a linguistic comparison scale represented by fuzzy numbers. Results of the first step revealed that the quality structure of Italian MTSs includes 15 key indicators with reference to four key MTSs quality features and seven key drivers. On the other hand, results of the second step pointed out that tangible aspects represents the fundamental key MTSs quality feature, whereas network population coverage, price of data services, and internet network performance represent the crucial key indicators. In addition, technological resources and technological innovation as well as informational resources constitute the most important key quality drivers of Italian MTSs. Obtained results may be of interest for MTSs managers and decision makers as well researchers of the field offering important suggestions as to how to evaluate and improve quality of MTSs. 相似文献
The paper reports on a freeze‐granulation technique to prepare a novel nanocomposite of poly(methyl methacrylate) (PMMA)‐modified hydroxyapatite (HA) with multiwalled carbon nanotubes (MWCNTs) as reinforcement for a new generation biomedical bone cement and implant coatings. By using this technique it is possible to increase material homogeneity and also enhance the dispersion of MWCNTs in the composite matrix. The phase composition and the surface morphology of the nanocomposite material were studied using X‐ray diffraction, field‐emission scanning electron microscopy, and micro‐Raman spectroscopy. Additionally, nanomechanical properties of different concentrations of MWCNT‐reinforced nanocomposite were performed by a nanoindentation technique, which indicates that a concentration of 0.1 wt % MWCNTs in the PMMA/HA nanocomposite material gives the best mechanical properties. 相似文献
The need for suitable and cost-effective technologies rise with the growth of the internet of things (IoT) applications. These aim at handling voluminous data transmission in addition to minimum energy and latency cost constraints. LoRa networks are recommended for applications in confined spaces, long ranges, and less battery consumption requirements. However, the end devices in these networks communicate to all gateways in their ranges, thereby expediting energy unproductively in redundant transmissions. In our article, we explore the possibilities of whether LoRa networks could employ the advantages of clustering and propose two algorithms, path-based and data-centric, for such networks. We suggest that LoRaWAN technology with clustering can be apt for long-range, low power consumption IoT applications in the future. We study the impact of network density, node range, and cluster range on the energy consumption in data transmissions. The algorithms are compared with the inherent star-based communication of LoRa networks based on energy consumed, and our results show that, for dense deployments, clustering becomes advantageous.
This paper presents a Vivaldi antenna. The antenna incorporates a slot-line feed, and is designed to operate in a wideband mode, along with four narrowband modes. The wideband mode extends from 1 to 3 GHz. A series of PIN diode switches is employed to reconfigure between the five different operating modes. Wideband-to-multiband reconfigurations are achieved by adjusting the antenna loading internally, and also by the incorporation of band-stop filters. To obtain the wideband mode, wideband matches load is used. On the other hand, to obtain the narrowband modes, two rectangular slits with narrowband matches load are used. The proposed Vivaldi antenna provides wideband operation. It is also supports operation within the LTE, GSM (L-band), GPS, and WiMAX bands. 相似文献
In this paper, we introduce a novel discrete chaotic map named zigzag map that demonstrates excellent chaotic behaviors and can be utilized in truly random number generators (TRNGs). We comprehensively investigate the map and explore its critical chaotic characteristics and parameters. We further present two circuit implementations for the zigzag map based on the switched current technique as well as the current-mode affine interpolation of the breakpoints. In practice, implementation variations can deteriorate the quality of the output sequence as a result of variation of the chaotic map parameters. In order to quantify the impact of variations on the map performance, we model the variations using a combination of theoretical analysis and Monte-Carlo simulations on the circuits. We demonstrate that even in the presence of the map variations, a TRNG based on the zigzag map passes all of the NIST 800-22 statistical randomness tests using simple post processing of the output data. 相似文献
Conductive polymeric blends (CPBs) of polystyrene and polyaniline (PS/PANI) were prepared by solution casting method in various compositions. Film thickness of CPBs was achieved?~?250 micron. PS/PANI blend films were analyzed for electromagnetic interference (EMI) shielding characteristics in microwave and near-infrared (NIR) regions. PS/PANI blends showed remarkable features. Most mobile telecommunications use GHz frequency range and shielding effectiveness was observed in 9 GHz to 18 GHz. In 9 GHz to 18 GHz frequency range, 45 dB shielding effectiveness was measured. CPBs were also analyzed in the NIR region and showed transmittance of <1%. Microwaves and NIR radiation are the most abundant in the environment and cause damage to human health. Both types of radiation causes serious damage to electronic devices as well.