首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4836篇
  免费   256篇
  国内免费   33篇
电工技术   77篇
综合类   40篇
化学工业   1041篇
金属工艺   108篇
机械仪表   138篇
建筑科学   78篇
矿业工程   3篇
能源动力   264篇
轻工业   479篇
水利工程   40篇
石油天然气   34篇
无线电   527篇
一般工业技术   1008篇
冶金工业   591篇
原子能技术   58篇
自动化技术   639篇
  2023年   81篇
  2022年   151篇
  2021年   263篇
  2020年   177篇
  2019年   184篇
  2018年   231篇
  2017年   198篇
  2016年   197篇
  2015年   122篇
  2014年   197篇
  2013年   322篇
  2012年   221篇
  2011年   258篇
  2010年   182篇
  2009年   157篇
  2008年   154篇
  2007年   147篇
  2006年   125篇
  2005年   104篇
  2004年   89篇
  2003年   72篇
  2002年   71篇
  2001年   45篇
  2000年   50篇
  1999年   54篇
  1998年   199篇
  1997年   135篇
  1996年   111篇
  1995年   72篇
  1994年   79篇
  1993年   71篇
  1992年   51篇
  1991年   46篇
  1990年   27篇
  1989年   41篇
  1988年   42篇
  1987年   24篇
  1986年   29篇
  1985年   34篇
  1984年   34篇
  1983年   16篇
  1982年   24篇
  1981年   24篇
  1980年   20篇
  1978年   22篇
  1977年   19篇
  1976年   33篇
  1975年   17篇
  1974年   24篇
  1972年   14篇
排序方式: 共有5125条查询结果,搜索用时 15 毫秒
81.
The established analysis for the study of oxidation using powder specimens is based on the assumption of monosized particles. The experiments, however, are conducted on powders with a distributed particle size. Here we present a statistical approach for the calculation of the rate constant for oxidation. The results of the analysis are applied to new data on oxidation studies of dense powders of silicon carbonitride amorphous ceramics. The monosized model requires a wide range of values for the rate constant to fit the short term and the long-term data, leading to considerable ambiguity in the estimate of the parabolic rate constant, k p, for oxidation. In contrast the statistical model fits over the entire range of data, yielding a much more reliable value for k p. For example, the monosized approach gave a value in the range 19.7 × 10−18 < k p < 2.7 × 10−18 m2/s. In contrast, the statistical model yields a specific value of 4.5 × 10−18 m2/s.  相似文献   
82.
A mathematical model of fluid flow and mass transfer in a packed bed was derived and used to evaluate the liquid phase axial dispersion and mass transfer coefficients under high pressure conditions. The least-squares method was used to evaluate the rate parameters from experimental breakthrough curves, and the agreement between the concentration curves predicted from rate parameters and those measured experimentally was good. Experiments were performed at 20 and 200°C with water as a solvent and nonporous soda-lime glass beads as packing. Although the axial dispersion coefficient was independent of temperature and pressure, the mass transport parameters were found to be pressure dependent.  相似文献   
83.
Rhutesh K. Shah  D.L. Hunter 《Polymer》2005,46(8):2646-2662
A detailed study of the structure-property relationships for nanocomposites prepared using melt processing techniques from a sodium ionomer of poly(ethylene-co-methacrylic acid) and a series of organoclays is reported. Transmission electron microscopy, X-ray scattering, stress-strain behavior, and Izod impact analysis were used to evaluate the nanocomposite morphology and physical properties. Four distinct surfactant structural effects lead to improved levels of exfoliation and higher stiffness for these nanocomposites: higher number of alkyl tails on the amine rather than one, longer alkyl tails instead of shorter ones, use of 2-hydroxy-ethyl groups as opposed to methyl groups on the ammonium ion, and an excess amount of the amine surfactant on the clay instead of an equivalent amount. These trends are opposite of what has been seen in nylon 6 based nanocomposites but are similar to those observed in nanocomposites formed from LDPE and LLDPE. Although some organoclays were exfoliated better than others, none of the ionomer-based nanocomposites exhibited exfoliation levels as great as those seen in nylon 6 nanocomposites; nevertheless, these nanocomposites offer promising improvements in performance and may be particularly interesting for barrier applications.  相似文献   
84.
World consumption of PVC was around 25 MM MT (55 billion pounds) in year 2001, second only to that of low density polyethylene. Only 10% of the PVC produced is classified as specialty PVC resins, while the other 90% is referred to as general purpose (GP) commodity resins. This paper tries to define what specialty PVC resins are, how they are produced, and their markets, applications, fabrication processes, and compounding as compared to those of GP resins.  相似文献   
85.
ABSTRACT

Fabrication of electronic materials from nanocomposite of biopolyesters reinforced with carbon nanotubes can be regarded as the effective alternative for conventional nanocomposites consisting of non-biodegradable polymers. Commercial availability of biopolyester-based nanocomposites is limited because of their high cost compared to other polymers, but the factor of their compostable nature is worthless for environmental protection. Such nanocomposites have potential applications in biodegradable sensors, EMI materials, etc. In this review, the current progress of biopolyester/CNTs nanocomposites in the field of biodegradable electronics is reviewed and also the impact of CNTs dispersion on electrical, thermal and mechanical properties of eco composites is stipulated.  相似文献   
86.
The liquefaction kinetics of Powhatan No.5 mine coal (Pittsburgh Seam) in the presence of SRC-II recycle solvent at short contact times (<10 min) and temperature and pressure ranges of 573–723 K and 10.3–13.8 MPa is examined in a well-mixed reactor. In the initial stages of liquefaction, while overall coal conversion (tetrahydrofuran solubles) increases with temperature, oil (pentane solubles) is lost with an increase in temperature. An increase in solvent-to-coal ratio results in an increase of conversion. The initial coal particle size distribution, total pressure, and nature of gas phase (nitrogen or hydrogen) have no significant effect on the production of any of the product of liquefaction for contact times up to 10 min. A lumped kinetic model is presented to describe the product distribution.  相似文献   
87.
FDA's Process Analytical Technology (PAT) initiative provides an unprecedented opportunity for chemical engineers to play significant roles in the pharmaceutical industry. In this article, the authors provide their perspectives on (1) the need for chemical engineering principles in pharmaceutical development for a thorough process understanding; (2) applications of chemical engineering principles to meet the challenges from the semiconductor and pharmaceutical industries; and (3) the integration of chemical engineering practice into the semiconductor and pharmaceutical industries to achieve process understanding and the desired state of quality-by-design. A real-world case study from the semiconductor industry is presented to demonstrate how a classic chemical engineering concept, mixing homogeneity, can be implemented by inducing forced flow to ensure an excellent copper electrochemical plating process performance and to improve product quality substantially. Further, a case study of brake system design is discussed with the concept of Dr. Taguchi's robust engineering design to illustrate how quality-by-design can be achieved through appropriate experimental design, in conjunction with the discussion on the concept of quality-by-design in pharmaceuticals. Third, a case study of freeze-dried sodium ethacrynate is presented to demonstrate the vital importance of controlling the processing factors to achieve the desired product stability. Finally, the problems of the current pharmaceutical manufacturing mode, the opportunities and engineering challenges during implementation of PAT in the pharmaceutical industry, and the role of chemical engineering in implementation of PAT is discussed in detail.  相似文献   
88.
Supported 12-tungstophosphoricacid (12-TPA) and 12-tunstosilicicacid (12-TSA) were used as heterogeneous catalysts for liquid-phase tert-butylation of m-cresol, an industrial important reaction. Alkylation reactions have been carried out with supported 12-TPA by varying different parameters such as % loading of 12-tungstophosphoricacid onto support, mole ratio of alcohol to m-cresol, reaction temperature, amount of the catalyst, reaction time and calcination temperature to optimize the conditions. To see the effect of the acidity on the reaction, the same reaction was studied over supported 12-TSA. Both the catalysts give 100% selectivity for o-isomer with different % conversion. The difference in catalyst performance of both the catalyst was correlated with the value of total acidity as well as Bronsted acidity.  相似文献   
89.
The reactor systems used for the Fischer-Tropsch synthesis, fixed bed, fluidized bed and slurry bed, are compared on the basis of space time yield (STY) and level of conversion obtainable under the same set of feed and operating conditions. The slurry bed and fluidized bed reactor were compared on the basis of a first order reaction model. The performance of these two reactors was found to be comparable at low values of WHSV, but at higher values of WHSV, the fluidized bed reactor gave higher conversions and STY. A power law kinetic expression was used to compare the performance of the slurry bed and fixed bed reactors. Higher conversions and STY were obtained from the fixed bed with varying WHSV. This may be due to the omission of the intra and inter phase mass transfer resistances in the modelling of the fixed bed reactor.  相似文献   
90.
Multiphase reactors involving gas, liquid, and solid phases have several important applications in the chemical industry, particularly in catalytic processes. Some of the well-known examples are: hydrogenation and oxidation of organic compounds, hydro-processing coal-derived and petroleum oils, Fischer-Tropsch synthesis, and methanation reactions. Due to the presence of three phases, the problem of reactor design is often important to achieve effective mass and heat transfer as well as a mixing pattern favorable to the particular process. The reactors are mainly of two types: (a) solid catalyst is suspended either by mechanical agitation or gas-induced agitation and (b) solid catalyst is in a fixed bed with concurrent or countercurrent feed of gas and liquid re-actants. The reactor types conventionally used in industry are: (a) mechanically agitated or bubble column slurry reactors and (b) trickle-bed or packed-bed bubble reactor. The various design and modeling aspects of these reactors have been reviewed by Satterfield [1], Chaudhari and Ramachandran [2], Shah [3,4], Ramachandran and Chaudhari [5], Shah et al. [6], and Herskowitz and Smith [7]. In several industrial processes these reactor designs are modified to achieve a certain specific objective, such as better heat or mass transfer, higher catalyst efficiency, better reactor performance and selectivity, etc. Similarly, specially designed reactors are often used for laboratory kinetic studies or to understand a certain phenomenon. Thus, novel multiphase reactors are becoming important from both academic and industrial viewpoints. Some of the recently introduced novel gas-liquid-solid reactor types are: (a) loop recycle slurry reactors, (b) basket-type reactors, (c) ebullated-bed reactors, (d) internal or external recycle reactors, (e) multistage slurry or packed-bed reactors, (f) column reactors with sieve trays or multiple agitators, (g) gas-induced agitated reactors, and (h) horizontal-packed-bed reactors. are being used in several new commercial processes, and various design aspects, such as hydrodynamics and mass and heat transfer, have been the subject of investigations in the last few years. However, no attempt to review the scattered information on these novel gas-liquid-solid reactors has been made. Therefore, the main objective of this paper is to review important developments in novel gas-liquid-solid reactors. For each type of reactor, advantages, disadvantages, and applications are discussed. Further, the status of information on hydrodynamics and mass transfer parameters and scale-up considerations is reviewed. These novel reactor designs are being used in several new commercial processes, and various design aspects, such as hydrodynamics and mass and heat transfer, have been the subject of investigations in the last few years. However, no attempt to review the scattered information on these novel gas-liquid-solid reactors has been made. Therefore, the main objective of this paper is to review important developments in novel gas-liquid-solid reactors. For each type of reactor, advantages, disadvantages, and applications are discussed. Further, the status of information on hydrodynamics and mass transfer parameters and scale-up considerations is reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号