首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   18篇
  国内免费   5篇
电工技术   3篇
综合类   2篇
化学工业   82篇
金属工艺   5篇
机械仪表   2篇
建筑科学   4篇
矿业工程   1篇
能源动力   24篇
轻工业   15篇
水利工程   12篇
石油天然气   15篇
无线电   12篇
一般工业技术   56篇
冶金工业   17篇
原子能技术   6篇
自动化技术   25篇
  2024年   2篇
  2023年   4篇
  2022年   8篇
  2021年   8篇
  2020年   8篇
  2019年   13篇
  2018年   22篇
  2017年   15篇
  2016年   20篇
  2015年   9篇
  2014年   12篇
  2013年   25篇
  2012年   12篇
  2011年   16篇
  2010年   15篇
  2009年   19篇
  2008年   14篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
11.
A series of biopolymer‐based superabsorbent hydrogels based on carboxymethyl cellulose has been prepared by free‐radical graft copolymerization of acrylamide and 2‐acrylamido‐2‐methylpropan sulfonic acid (AMPS) in aqueous solution using methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator. The effect of variables on the swelling capacity such as: acrylamide/AMPS weight ratio, reaction temperature, and concentration of the initiator and crosslinker were systematically optimized. The results indicated that with increasing the amount of AMPS, the swelling capacity is increased. FT‐IR spectroscopy and scanning electron microscope analysis were used to confirm the hydrogel structure. Swelling measurements of the synthesized hydrogels in different salt solutions indicated considerable swelling capacity. The absorbency under load of the superabsorbent hydrogels was determined by using an absorbency under load tester at various applied pressures. A preliminary swelling and deswelling behaviors of the hydrogels were also studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
12.
The main aim of this work is the presentation of both qualitative safety and quantitative operating analyses of silica membrane reactor (MR) for carrying out methanol steam reforming (MSR) reaction to produce hydrogen. To perform the safety analysis, HAZOP method is used. Before the HAZOP analysis, a comprehensive investigation of most important operating parameters effects on silica MR performance is required. Therefore, for a quantitative analysis, a 1-dimensional and isothermal model is developed for evaluating the reaction temperature, reaction pressure, feed molar ratio (steam/methanol) and feed flow rate effects on silica MR performance in terms of methanol conversion and hydrogen recovery. The model validation results show good agreement with experimental data from literature. As a consequence, simulation results indicate that the reaction pressure and feed molar ratio have dual effect on silica MR performance. In particular, it is found that methanol conversion is decreased by increasing the reaction pressure from 1.5 to 4.0 bar, whereas over 4.0 bar, it is improved. Moreover, the hydrogen recovery is decreased by increasing the feed molar ratio from 1 to 5, while over 5, it was approximately constant. After the evaluation of modeling results, the HAZOP analysis for silica MR is carried out during MSR reaction. The analysed operating parameters in the modeling study have been considered as key parameters in the HAZOP analysis. The safety assessment results are presented in tables as check list. By considering the HAZOP results, safety pretreatment works are recommended before or during the experimental tests of MSR reaction in silica MR. According to different parameters consequences, reaction temperature is the most critical parameter in MSR reaction for the silica MR studied in this work. In particular, to avoid the consequences of temperature deviation, it is recommended to use a PID temperature controller in the silica MR for MSR reaction.  相似文献   
13.
14.
In this paper, we address the problem of localizing extrema points and iso-contours of ambient environmental fields (specifically, ocean bottom landscape and underwater plumes) using a networked formation of autonomous underwater vehicles. We propose the use of the Nelder-Mead extension to the basic simplex nonlinear optimization algorithm. In these robust gradient-free strategies, decisions are solely made based on field values measured by the individual vehicles, while measurements are fused and actions decided according to the algorithm. A main goal of this paper is to trigger interest in direct search methods as pertains to this type of robotic problem.  相似文献   
15.
Water Resources Management - In water resource management, assessing water resource allocation scenarios (WRASs) is an important multi-attribute decision making (MADM) problem. It involves...  相似文献   
16.
In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x 1), L/D ratio (x 2), barrel temperature (°C; x 3), and feed mix moisture content (%; x 4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed?>?80 rpm, L/D ratio?>?12, barrel temperature?>?80 °C, and feed mix moisture content?>?20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19?×?10?7 m3/s (x 1?=?139.08 rpm, x 2?=?15.90, x 3?=?99.56 °C, and x 4?=?59.72%) and 0.53?×?10?7 m3/s (x 1?=?59.65 rpm, x 2?=?11.93, x 3?=?68.98 °C, and x 4?=?20.04%).  相似文献   
17.
Strain rate has significant effect on mechanical behavior of the thermoset polymers. The rate sensitivity is more complicated for thermoset nanocomposites, which compose of two quite different types of materials. Nanofiller‐reinforced epoxy resin is widely used in the industry. In the present work, epoxy resin is reinforced by 0.05 to 0.7 wt% nanographene oxide (GO). The strain rate sensitivity of the fabricated nanocomposites is investigated through compressive test carried out at the strain rates of 0.001–1,900 s?1. The stress–strain curves of the nanocomposites indicated considerable difference between the low‐strain and high‐strain‐rate responses of the specimens. The results showed that the compressive strength of the nanocomposites was improved by more than 100% at high strain rates with respect to the low strain rates. Also, the addition of nano‐GO had influence on compressive strength enhancement but not as significant as the effect of strain rate. It was observed that the effect of GO was less important for higher strain rates. The experimental compressive strength and modulus of elasticity of the nanocomposites were casted in empirical relations for low and high strain rates for various filler weight percentages. Scanning electron microscopy was also used to examine the quality of GO dispersion. POLYM. ENG. SCI., 59:1636–1647 2019. © 2019 Society of Plastics Engineers  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号