首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   36篇
  国内免费   1篇
电工技术   1篇
化学工业   113篇
金属工艺   1篇
机械仪表   20篇
建筑科学   18篇
能源动力   16篇
轻工业   24篇
无线电   46篇
一般工业技术   85篇
冶金工业   29篇
自动化技术   24篇
  2024年   3篇
  2023年   10篇
  2022年   31篇
  2021年   21篇
  2020年   23篇
  2019年   14篇
  2018年   18篇
  2017年   18篇
  2016年   17篇
  2015年   9篇
  2014年   14篇
  2013年   23篇
  2012年   11篇
  2011年   25篇
  2010年   11篇
  2009年   17篇
  2008年   10篇
  2007年   15篇
  2006年   11篇
  2005年   10篇
  2004年   8篇
  2003年   12篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有377条查询结果,搜索用时 0 毫秒
71.
The electronic processes occurring within the perovskite solar cells (PSCs) are strongly influenced by the nature of the organic A cations present within the inorganic framework. In this study, the impact of FA (CH(NH2)2+) and Cs+ cations on the intrinsic and interfacial properties in the FAPbBr3 and CsPbBr3 PSCs is investigated. The analysis of current density ( J SC) and photovoltage ( V OC) as a function of illumination intensity establishes that the interfacial charge transport is more rapid in FAPbBr3 devices. Small perturbation measurements including intensity modulated photocurrent and photovoltage spectroscopy are applied to explore the resistive and capacitive elements. Furthermore, electrochemical impedance spectroscopy measurements are found to correlate well with the photovoltaic characteristics of FAPbBr3 and CsPbBr3 PSCs. Overall, the in‐depth analysis of various phenomena occurring within the bromide PSCs allows to underline the working principle, which provides a key to optimize the device performance. The present protocol is not only valid for PSCs but can also be extended to devices based on alternative light harvesters.  相似文献   
72.
The effect of cutting speed and tool geometry on the plastic deformation in the surface region of annealed red brass machined orthogonally under lubricated and unlubricated conditions is determined using the grid technique and metallography.The results show that the magnitude of the plastic deformation in the surface region and the depth of the work-hardened layer increase with a decrease in the cutting speed or the tool rake angle. Change in the tool wear land length produces a lesser change in the subsurface deformation than that observed to be due to a change in the other cutting parameters.The presence of the lubricant in the cutting region results in a considerable reduction in the subsurface damage.  相似文献   
73.
Wireless Personal Communications - Enhanced throughput under efficient dynamic spectrum access is possible by secondary access based cognitive radio networking in TV white space (TVWS). The current...  相似文献   
74.
Wireless Personal Communications - Road Accident is a significant concern in every county. According to WHO (World Health Organization) reports, 1.3 million people died in road traffic crashes, and...  相似文献   
75.
76.
One of the most prominent hole-transporting material (HTM) for hybrid perovskite solar cells has been 2,2″,7,7″-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD), which is commonly doped with metal bis(trifluoromethylsulfonyl)imide (M(TFSI)n) salts that contribute to generating the active radical cation HTM species. The underlying role of the metal cation, however, remains elusive. Here, the effect of metal cations (M = Li, Zn, Ca, Cu, and Sc) on doping spiro-OMeTAD is analyzed by a combination of techniques, including electron paramagnetic resonance spectroscopy and cyclic voltammetry, which is complemented by photovoltaic device and hole mobility analysis. As a result, the authors reveal the superiority of Zn(TFSI)2 salts in device performances as compared to the others, including redox-active Cu(TFSI)2. This analysis thereby unravels new design principles for dopant engineering in HTMs for hybrid perovskite photovoltaics.  相似文献   
77.
The in situ formation of a light‐emitting p–n or p–i–n junction in light‐emitting electrochemical cells (LECs) necessitates mixed ionic–electronic conductors in the active layer. This unique characteristic requires electronic, luminescent, and ionic ingredients that work synergistically in the LECs. The material requirements that lead to promising electroluminescent properties are discussed and the important components reported so far are surveyed. Particular attention is paid to the working mechanisms behind junction formation and stabilization to create efficient and stable electroluminescence in conjugated‐polymer‐based LECs. Keeping these fundamentals in mind explains how LEC devices have evolved from classic conjugated polymer blends into highly stable crosslinked, hybrid composite, and stretchable device architectures. To conclude, a future development strategy is proposed based on a dual approach: develop new materials specifically for LEC devices and explore novel ways to efficiently process and stabilize the p–i–n junction, which will drive improvements in both LEC external quantum efficiency and operating lifetime toward truly low‐cost solid‐state lighting applications.  相似文献   
78.
79.

Shallow domes subjected to external pressure are extensively used in missile structures. The critical failure mode for these domes is buckling due to external pressure. Different closed form solutions are available to evaluate buckling pressure of dome shapes like ellipsoid and torisphere. The torisiphere dome is the optimum dome shape among conventional domes. Shape optimization is carried out to find the optimal dome shape among shallow domes subjected to external pressure. Dome geometry is generalized by cubic bezier polynomials. For carrying out shape optimization, a low fidelity model is preferred which can predict the critical buckling pressure of a general dome shape. Towards this a unified model is proposed which meets the above requirement. Using this unified model, shape optimization of dome for minimization of mass is carried out subjected to buckling constraint. The study yielded a dome shape different from conventional dome shapes with a mass saving of 6% over torispherical dome while meeting the buckling constraint. The results of unified model are also validated with high fidelity Finite Element Analysis.

  相似文献   
80.
Interpenetrating photopolymer network materials suitable for intraocular lens application are presented. A rapidly curable, transparent, hydrophobic material with appropriate optical and thermomechanical properties has been prepared from Benzyl acrylate and Benzyl methacrylate. To improve its biocompatibility and optimize surface—cell interactions, this material was modified with respect to its hydrophobicity. Materials which are more hydrophobic, and more hydrophilic, than the base resin were prepared by copolymerization with either a fluoroacrylate or a PEG acrylate respectively. All materials were characterized for their optical and thermomechanical properties. Their in‐vitro cytotoxicity and interaction with mouse fibroblast cells were also studied. It was shown that all materials of the study were biocompatible and more hydrophilic materials resisted cell attachment and may be more suitable for IOL application than their more hydrophobic counter parts of the study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44496.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号