首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   8篇
  国内免费   5篇
化学工业   28篇
金属工艺   3篇
机械仪表   2篇
建筑科学   9篇
能源动力   9篇
轻工业   15篇
水利工程   1篇
无线电   26篇
一般工业技术   35篇
冶金工业   12篇
原子能技术   2篇
自动化技术   15篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   13篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   4篇
  2016年   12篇
  2015年   3篇
  2014年   7篇
  2013年   10篇
  2012年   3篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
21.

Conductive polymeric blends (CPBs) of polystyrene and polyaniline (PS/PANI) were prepared by solution casting method in various compositions. Film thickness of CPBs was achieved?~?250 micron. PS/PANI blend films were analyzed for electromagnetic interference (EMI) shielding characteristics in microwave and near-infrared (NIR) regions. PS/PANI blends showed remarkable features. Most mobile telecommunications use GHz frequency range and shielding effectiveness was observed in 9 GHz to 18 GHz. In 9 GHz to 18 GHz frequency range, 45 dB shielding effectiveness was measured. CPBs were also analyzed in the NIR region and showed transmittance of <1%. Microwaves and NIR radiation are the most abundant in the environment and cause damage to human health. Both types of radiation causes serious damage to electronic devices as well.

  相似文献   
22.
23.
24.
25.
在室温和高温下,以不同辐射剂量的H+、N+和Ar+离子辐照多壁碳纳米管和无定形碳纳米线。利用透射电镜和拉曼光谱研究多壁碳纳米管和无定形碳纳米线的结构变化及损伤。以70keV N+离子束辐射多壁碳纳米管在室温下可形成无定形碳纳米线。1000K下70keV的H+离子束照射导致无定形碳纳米线向金刚石结构转变。离子辐照多壁碳纳米管的有序程度足够高,70keV的N+和Ar+离子能够引起碳从多壁碳纳米管的剥落。离子辐射能够为缺陷的转化提供必需的动力学驱动力。  相似文献   
26.
27.
28.
The present study involves the treatment of high strength Bulk Drug Industry Wastewater by electrochemical method. The treatability studies were carried out with four different electrodes made of mild steel, aluminum, carbon, and stainless steel. The treatment efficiencies for chemical oxygen demand (COD)/biochemical oxygen demand (BOD), color, and heavy metal removals were assessed at different electrolysis time. A comparative study for heavy metal removal between chemical precipitation using aluminum and electrocoagulation with aluminum electrode has shown electrocoagulation to be more effective. Carbon electrode has shown COD removal of 34.0% and high BOD5f/CODf ratio of 0.581 at 120-min exposure time. Among all electrodes, aluminum was found as the most efficient in removal of color, suspended solids, and heavy metals with the least energy consumption of 95.83?Wh?kg?1?CODr and anode efficiency of 5.76?kg?COD?A?1?m?2?h?1. After electrochemical treatment, certain increase in BOD/COD ratio attributed to increase in biodegradability of wastewater. The study reveals that the wastewater could be effectively pretreated by electrochemical method.  相似文献   
29.
With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function Virtualization (NFV) framework, we need to eradicate network security configuration errors that may create vulnerabilities to affect overall efficiency, reduce network performance, and increase maintenance cost. The existing frameworks lack in security, and computer systems face few abnormalities, which prompts the need for different recognition and mitigation methods to keep the system in the operational state proactively. The fundamental concept behind SDN-NFV is the encroachment from specific resource execution to the programming-based structure. This research is around the combination of SDN and NFV for rational decision making to control and monitor traffic in the virtualized environment. The combination is often seen as an extra burden in terms of resources usage in a heterogeneous network environment, but as well as it provides the solution for critical problems specially regarding massive network traffic issues. The attacks have been expanding step by step; therefore, it is hard to recognize and protect by conventional methods. To overcome these issues, there must be an autonomous system to recognize and characterize the network traffic’s abnormal conduct if there is any. Only four types of assaults, including HTTP Flood, UDP Flood, Smurf Flood, and SiDDoS Flood, are considered in the identified dataset, to optimize the stability of the SDN-NFV environment and security management, through several machine learning based characterization techniques like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR) and Isolation Forest (IF). Python is used for simulation purposes, including several valuable utilities like the mine package, the open-source Python ML libraries Scikit-learn, NumPy, SciPy, Matplotlib. Few Flood assaults and Structured Query Language (SQL) injections anomalies are validated and effectively-identified through the anticipated procedure. The classification results are promising and show that overall accuracy lies between 87% to 95% for SVM, LR, KNN, and IF classifiers in the scrutiny of traffic, whether the network traffic is normal or anomalous in the SDN-NFV environment.  相似文献   
30.
One dimensional (1D) nanostructures and its derivatives can be manipulated to serve special functions like hollow structure, and higher surface area. 1D TiO2 nanotube-in-nanofibers (NF@NT) are developed through triaxial electrospinning followed by a calcination process. A blended solution of polyvinyl pyrrolidone and tetra-butyl titanate is used in outer and inner layers of nanofibers, respectively, while paraffin oil is used in the middle layer. The optimized triaxial nanofibers of 669.4 ± 52.43 nm are developed at 7.5 w/w% concentration, 28 kV applied voltage, and 24 cm spinning distance. TiO2 NF@NT structure is obtained through calcination of optimized triaxial nanofibers at 550°C. Subsequently, the morphology of TiO2 NF@NT and its uniform diameter distribution is confirmed through scanning electron microscopy. Fourier-transform infrared spectroscopy results indicates the formation of TiO2 NF@NT. X-Rays diffraction pattern peaks also reveals the presence of both anatase and rutile crystalline phases. The presence of only titanium (Ti) and oxygen (O) elements in the TiO2 NF@NT is confirmed through energy dispersive X-ray spectroscopy. Brunauer–Emmett–Teller analysis indicates that TiO2 NF@NT has a higher specific surface area of ~141.68 m2/g compared with the solid TiO2 nanofiber (~75.31 m2/g). This study can be adopted to develop TiO2 NF@NT for wide range of application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号