首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455篇
  免费   39篇
  国内免费   4篇
电工技术   65篇
综合类   1篇
化学工业   307篇
金属工艺   77篇
机械仪表   28篇
建筑科学   44篇
能源动力   51篇
轻工业   110篇
水利工程   3篇
无线电   144篇
一般工业技术   270篇
冶金工业   264篇
原子能技术   62篇
自动化技术   72篇
  2023年   4篇
  2022年   11篇
  2021年   21篇
  2020年   14篇
  2019年   11篇
  2018年   22篇
  2017年   16篇
  2016年   29篇
  2015年   23篇
  2014年   27篇
  2013年   78篇
  2012年   51篇
  2011年   96篇
  2010年   52篇
  2009年   56篇
  2008年   66篇
  2007年   64篇
  2006年   54篇
  2005年   58篇
  2004年   61篇
  2003年   42篇
  2002年   32篇
  2001年   52篇
  2000年   31篇
  1999年   35篇
  1998年   113篇
  1997年   59篇
  1996年   44篇
  1995年   40篇
  1994年   36篇
  1993年   25篇
  1992年   13篇
  1991年   11篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1979年   6篇
  1978年   6篇
  1977年   12篇
  1976年   13篇
  1975年   8篇
  1974年   5篇
  1973年   5篇
  1971年   4篇
排序方式: 共有1498条查询结果,搜索用时 15 毫秒
31.
Making contact of transition metal dichalcogenides (TMDCs) with a metal surface is essential for fabricating and designing electronic devices and catalytic systems. It also generates strain in the TMDCs that plays significant role in both electronic and phonon structures. Therefore, detailed understanding of mechanism of the strain generation is important to fully comprehend the modulation effect for the electronic and phonon properties. Here, MoS2 and MoSe2 monolayers are grown on Au surface by chemical vapor deposition and it is demonstrated that the contact with a crystalline Au(111) surface gives rise to only out‐of‐plane strain in both MoS2 and MoSe2 layers, whereas no strain generation is observed on polycrystalline Au or SiO2/Si surfaces. Scanning tunneling microscopy analysis provides information regarding consequent specific adsorption sites between lower S (Se) atoms in the S? Mo? S (Se? Mo? Se) structure and Au atoms via unique moiré superstructure formation for MoS2 and MoSe2 layers on Au(111). This observation indicates that the specific adsorption sites give rise to out‐of‐plane strain in the TMDC layers. Furthermore, it also leads to effective modulation of the electronic structure of the MoS2 or MoSe2 layer.  相似文献   
32.
33.
We measured the thermal dependencies of the refractive index and the absorption coefficient of high-resistivity silicon. We found that the refractive index varied slightly with temperature, and the absorption coefficient was very low and remained approximately constant as the temperature was changed. As a result, the conditions for terahertz propagation in silicon could be controlled by changing the refractive index without any absorption loss. As one application of this effect, we developed a terahertz time delay generator that can generate a terahertz time delay by changing the temperature of the medium through which the terahertz beam passes, without the need for any mechanical delay. We demonstrated generation of a terahertz time delay of approximately 6.6 ps.  相似文献   
34.
A highly active iron–nitrogen‐doped carbon nanotube catalyst for the oxygen reduction reaction (ORR) is produced by employing vertically aligned carbon nanotubes (VA‐CNT) with a high specific surface area and iron(II) phthalocyanine (FePc) molecules. Pyrolyzing the composite easily transforms the adsorbed FePc molecules into a large number of iron coordinated nitrogen functionalized nanographene (Fe–N–C) structures, which serve as ORR active sites on the individual VA‐CNT surfaces. The catalyst exhibits a high ORR activity, with onset and half‐wave potentials of 0.97 and 0.79 V, respectively, versus reversible hydrogen electrode, a high selectivity of above 3.92 electron transfer number, and a high electrochemical durability, with a 17 mV negative shift of E 1/2 after 10 000 cycles in an oxygen‐saturated 0.5 m H2SO4 solution. The catalyst demonstrates one of the highest ORR performances in previously reported any‐nanotube‐based catalysts in acid media. The excellent ORR performance can be attributed to the formation of a greater number of catalytically active Fe–N–C centers and their dense immobilization on individual tubes, in addition to more efficient mass transport due to the mesoporous nature of the VA‐CNTs.  相似文献   
35.
It has been reported that an anisotropic magnetic field could produce the three-dimensional alignment of fine single-crystal particles with the orthorhombic crystal structure.However,the three-dimensional alignment was achieved only in suspensions.Fabrication of bulk"single"materials that have the three-dimensional alignment of grains has been desired.This study proposes a procedure for the fabrication,which consists of slip casting under an oscillating magnetic field and sintering.Optimization of casting and sintering conditions achieved the three-dimensionally aligned bulkβ-FeSi2.  相似文献   
36.
Solar-to-hydrogen conversion efficiencies of water-splitting photochathodes using epitaxially grown p-type 4H-, 6H- and 3C-SiC were estimated in a two-electrode system without applying any external bias. By using electrode materials with small oxygen overpotentials as counter electrodes, the photocurrent became comparable to that observed in a three-electrode system with a suitable bias. Estimated efficiencies seem to depend on the bandgap of the SiC polytypes. For the 3C-SiC, the obtained efficiency was 0.38%, which is so far the highest value reported for SiC. We confirmed that the hydrogen volumes estimated from the photocurrent were almost the same as actual volumes observed by gas chromatography.  相似文献   
37.
The phonon thermal conductivity of misfit-layered Ca3Co4O9 has been calculated by perturbed molecular dynamics using a classical force field. Detailed numerical analyses reveal that, in spite of its smaller cross-sectional area, the CoO2 layer transports more heat than the thicker rock salt (RS) layer, although its local thermal conduction is more suppressed than in another layered cobaltite, Na x CoO2. The origins of these differences have been elucidated through careful examination of the atomic arrangements in each layer. Since thermal conduction in the RS layer can be reduced without deteriorating electronic properties for which the CoO2 layer is responsible, it is suggested that the RS layer should be modified to further suppress the overall in-plane thermal conductivity. Computational experiments with increasing number of Ca–O planes in the RS layer showed the opposite trend to what can be predicted based on the misfit between two dissimilar layers. Further analyses to reveal the origin of these unexpected results provide yet another strategy to further decrease the thermal conductivity, namely to control the dynamic interference between atoms across the interface between two layers.  相似文献   
38.
Indoleamine 2,3‐dioxygenase 1 (IDO1) has emerged as a key target for cancer therapy, as IDO1 plays a critical role in the capacity of tumor cells to evade the immune system. The pyrrolopiperazinone alkaloid longamide B and its derivatives were identified as novel IDO1 inhibitors based on docking studies and small library synthesis. The thioamide derivative showed higher IDO1 inhibitory activity than longamide B, and displayed an activity similar to that of a representative IDO1 inhibitor, 1‐methyl‐tryptophan. These results suggest that the pyrrolopiperazinone scaffold of longamide B could be used in the development of IDO1 inhibitors.  相似文献   
39.
The behavior of plasma polymer coating for Cu corrosion protection was investigated in dc cathodic polymerization, with and without anode magnetron enhancement, af magnetron glow discharge polymerization, and rf glow discharge polymerization. The combination of visual and scanning electron microscopy observations established general trends in an accelerated wet/dry cycle corrosion testing environment containing 0.1N chloride ions. Dc anodic magnetron cathodic polymerization of TMS offered the best Cu corrosion protection due to an enhanced deposition uniformity and adhesion of the deposited plasma polymer to the Cu substrate. No corrosion was observed after 25 wet/dry cycle accelerated corrosion tests when uncoated Cu suffered a severely generalized attack in one cycle. Superior corrosion protection was also performed by an af plasma polymerized coating of C4F10 + H2 (1 : 1) at a low-energy input density and of methane at high-energy input and high deposition thickness carried out in the range of this study. The application of plasma polymers which showed high water vapor permeation resistance and surface dynamic stability ǵreatly reduced the pitting densities. © 1996 John Wiley & Sons, Inc.  相似文献   
40.
Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号