首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   5篇
  国内免费   1篇
电工技术   3篇
化学工业   35篇
金属工艺   2篇
机械仪表   3篇
建筑科学   6篇
能源动力   5篇
轻工业   7篇
石油天然气   5篇
无线电   9篇
一般工业技术   27篇
冶金工业   14篇
原子能技术   1篇
自动化技术   71篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   14篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   10篇
  2008年   8篇
  2007年   13篇
  2006年   9篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
11.
12.
13.
Checking that a given finite state program satisfies a linear temporal logic property suffers from the state explosion problem. Often the resulting lack of available memory is more significant than any time limitations. One way to cope with this is to reduce the state graph used for model checking. We present an algorithm for constructing a state graph that is a projection of the program's state graph. The algorithm maintains the transitions and states that affect the truth of the property to be checked. Especially in conjunction with known partial order reduction algorithms, we show a substantial reduction in memory over using partial order methods alone, both in the precomputation stage, and in the result presented to a model checker. The price of the space reduction is a single additional traversal of the graph obtained with partial order reduction. As part of our space-saving methods, we present a new way to exploit Holzmann's Bit Hash Table, which assists us in solving the revisiting problem.  相似文献   
14.
15.
The Label-Cover problem, defined by S. Arora, L. Babai, J. Stern, Z. Sweedyk [Proceedings of 34th IEEE Symposium on Foundations of Computer Science, 1993, pp. 724-733], serves as a starting point for numerous hardness of approximation reductions. It is one of six ‘canonical’ approximation problems in the survey of Arora and Lund [Hardness of Approximations, in: Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, 1996, Chapter 10]. In this paper we present a direct combinatorial reduction from low error-probability PCP [Proceedings of 31st ACM Symposium on Theory of Computing, 1999, pp. 29-40] to Label-Cover showing it NP-hard to approximate to within 2(logn)1−o(1). This improves upon the best previous hardness of approximation results known for this problem.We also consider the Minimum-Monotone-Satisfying-Assignment (MMSA) problem of finding a satisfying assignment to a monotone formula with the least number of 1's, introduced by M. Alekhnovich, S. Buss, S. Moran, T. Pitassi [Minimum propositional proof length is NP-hard to linearly approximate, 1998]. We define a hierarchy of approximation problems obtained by restricting the number of alternations of the monotone formula. This hierarchy turns out to be equivalent to an AND/OR scheduling hierarchy suggested by M.H. Goldwasser, R. Motwani [Lecture Notes in Comput. Sci., Vol. 1272, Springer-Verlag, 1997, pp. 307-320]. We show some hardness results for certain levels in this hierarchy, and place Label-Cover between levels 3 and 4. This partially answers an open problem from M.H. Goldwasser, R. Motwani regarding the precise complexity of each level in the hierarchy, and the place of Label-Cover in it.  相似文献   
16.
The reaction of isonicotinoyl hydrazone of pyridoxal (PIH), a biologically active iron-carrier, with FeSO4-7H20 at pH ∼ 6 generates the delta, lamda species of the N,N-trans-O,O-cis-cis coordination isomer of an iron(III) complex with iron-to-ligand ratio of 1:2. The dark red-brown crystals are monoclinic, space group C2/c, with unit-cell dimensions a = 14.487(2), b = 18.586(2), c = 27.508(4) Å, β = 102.76(3)°, and Z = 8. The coordination around the metal is distorted octahedral and involves the protonated organic ligands, which are chelated through the phenolic oxygen [Fe-O1 1.941(6), Fe-O1′ 1.938(6)], an enolic form of the carbonyl oxygen [Fe-O3 2.017(6), Fe-O3′ 2.018(6)] and the azomethinic nitrogen [Fe-N2 2.133(8), Fe-N2′ 2.133(8)]. Packing is determined by systems of N-H….O and O-H….O hydrogen bonds involving the protonated pyridoxal nitrogens, the pyridoxal hydroxymethyl group, and the [SO4]2− group. The Mössbauer spectra at different temperatures (300 K, 88 K and 4.1 K) clearly prove that the iron atom in the complex is in a high-spin trivalent state.  相似文献   
17.
Polymeric carbon nitride is a promising photoanode material for water-splitting and organic transformation-based photochemical cells. Despite achieving significant progress in performance, these materials still exhibit low photoactivity compared to inorganic photoanodic materials because of a moderate visible light response, poor charge separation, and slow oxidation kinetics. Here, the synthesis of a sodium- and boron-doped carbon nitride layer with excellent activity as a photoanode in a water-splitting photoelectrochemical cell is reported. The new synthesis consists of the direct growth of carbon nitride (CN) monomers from a hot precursor solution, enabling control over the monomer-to-dopant ratio, thus determining the final CN properties. The introduction of Na and B as dopants results in a dense CN layer with a packed morphology, better charge separation thanks to the in situ formation of an electron density gradient, and an extended visible light response up to 550 nm. The optimized photoanode exhibits state-of-the-art performance: photocurrent densities with and without a hole scavenger of about 1.5 and 0.9 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE), and maximal external quantum efficiencies of 56% and 24%, respectively, alongside an onset potential of 0.3 V.  相似文献   
18.
Multi-gate transistors enable the pace of Moore's Law for another decade. In its 22 nm technology node Intel switched to multi-gate transistors called TriGate, whereas IBM, TSMC, Samsung and others will do so in their 20 nm and 14 nm nodes with multi-gate transistors called FinFET. Several recent publications studied the drawing of multi-gate transistors layout. Designing new VLSI cell libraries and blocks requires massive re-drawing of layout. Hard-IP reuse is an alternative method taking advantage of existing source layout by automatically mapping it into new target technology, which was used in Intel's Tick-Tock marketing strategy for several product generations. This paper presents a cell-level hard-IP reuse algorithm, converting planar transistors to multi-gate ones. We show an automatic, robust transformation of bulk diffusion polygons into fins, while addressing the key requirements of cell libraries, as maximizing performance and interface compatibility across a variety of driving strength. We present a layout conversion flow comprising time-efficient geometric manipulations and discrete optimization algorithms, while generating manually drawn layout quality. Those can easily be used in composing larger functional blocks.  相似文献   
19.
A mechanized verification environment made up of theories over the deductive mechanized theorem prover PVS is presented, which allows taking advantage of the convenient computations method. This method reduces the conceptual difficulty of proving a given property for all the possible computations of a system by separating two different concerns: (1) proving that special convenient computations satisfy the property, and (2) proving that every computation is related to a convenient one by a relation which preserves the property. The approach is especially appropriate for applications in which the first concern is trivial once the second has been shown, e.g., where the specification itself is that every computation reduces to a convenient one. Two examples are the serializability of transactions in distributed databases, and sequential consistency of distributed shared memories. To reduce the repetition of effort, a clear separation is made between infrastructural theories to be supplied as a proof environment PVS library to users, and the specification and proof of particular examples. The provided infrastructure formally defines the method in its most general way. It also defines a computation model and a reduction relation—the equivalence of computations that differ only in the order of finitely many independent operations. One way to prove that this relation holds between every computation and some convenient one involves the definition of a measure function from computations into a well-founded set. Two possible default measures, which can be applied in many cases, are also defined in the infrastructure, along with useful lemmas that assist in their usage. We show how the proof environment can be used, by a step-by-step explanation of an application example.  相似文献   
20.
Computing occluding and transparent motions   总被引:13,自引:6,他引:7  
Computing the motions of several moving objects in image sequences involves simultaneous motion analysis and segmentation. This task can become complicated when image motion changes significantly between frames, as with camera vibrations. Such vibrations make tracking in longer sequences harder, as temporal motion constancy cannot be assumed. The problem becomes even more difficult in the case of transparent motions.A method is presented for detecting and tracking occluding and transparent moving objects, which uses temporal integration without assuming motion constancy. Each new frame in the sequence is compared to a dynamic internal representation image of the tracked object. The internal representation image is constructed by temporally integrating frames after registration based on the motion computation. The temporal integration maintains sharpness of the tracked object, while blurring objects that have other motions. Comparing new frames to the internal representation image causes the motion analysis algorithm to continue tracking the same object in subsequent frames, and to improve the segmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号