首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   13篇
电工技术   26篇
综合类   1篇
化学工业   76篇
金属工艺   9篇
机械仪表   3篇
建筑科学   7篇
能源动力   8篇
轻工业   20篇
无线电   26篇
一般工业技术   49篇
冶金工业   10篇
原子能技术   4篇
自动化技术   28篇
  2023年   4篇
  2022年   13篇
  2021年   12篇
  2020年   6篇
  2019年   8篇
  2018年   10篇
  2017年   8篇
  2016年   5篇
  2015年   4篇
  2014年   15篇
  2013年   15篇
  2012年   17篇
  2011年   16篇
  2010年   11篇
  2009年   13篇
  2008年   11篇
  2007年   8篇
  2006年   9篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
排序方式: 共有267条查询结果,搜索用时 48 毫秒
41.
A method of Al2O3 deposition and subsequent post-deposition annealing (Al2O3-PDA) was proposed to passivate electrically active defects in Ge-rich SiGe-on-insulator (SGOI) substrates, which were fabricated using Ge condensation by dry oxidation. The effect of Al2O3-PDA on defect passivation was clarified by surface analysis and electrical evaluation. It was found that Al2O3-PDA could not only suppress the surface reaction during Al-PDA in our previous work [Yang H, Wang D, Nakashima H, Hirayama K, Kojima S, Ikeura S. Defect control by Al-deposition and the subsequent post-annealing for SiGe-on-insulator substrates with different Ge fractions. Thin Solid Films 2010; 518: 2342-5.], but could also effectively passivate p-type defects generated during Ge condensation. The concentration in the range of 1016-1018 cm−3 for defect-induced acceptors and holes in Ge-rich SGOI drastically decreased after Al2O3-PDA. As a result of defect passivation, the electrical characteristics of both back-gate p-channel and n-channel metal-oxide-semiconductor field-effect transistors fabricated on Ge-rich SGOI were greatly improved after Al2O3-PDA.  相似文献   
42.
Simultaneous realization of high values of open circuit voltage (Voc), fill factor (FF), and energy conversion efficiency (η) in wide‐gap CuGaSe2 (CGS) solar cells has long been one of the most challenging issues in the realm of chalcopyrite photovoltaics. In this communication, structural tuning of CGS thin films by means of controlling the amount of Se flux used during CGS film growth and improvements in solar cell performance (Voc > 0.9 V, FF > 0.7, and η > 10%) are demonstrated. Systematic variations in CGS film properties with the Se flux and correlation with device properties are shown. The unique CGS thin‐film growth kinetics, which are different from narrow‐gap Cu(In,Ga)Se2, are also presented and discussed. This development of double digit efficiency for CGS solar cells opens a new frontier for the broad application of a new class of chalcopyrite‐based devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
43.
44.
Nanoparticle technology is being incorporated into many areas of molecular science and biomedicine. Because nanoparticles are small enough to enter almost all areas of the body, including the circulatory system and cells, they have been and continue to be exploited for basic biomedical research as well as clinical diagnostic and therapeutic applications. For example, nanoparticles hold great promise for enabling gene therapy to reach its full potential by facilitating targeted delivery of DNA into tissues and cells. Substantial progress has been made in binding DNA to nanoparticles and controlling the behavior of these complexes. In this article, we review research on binding DNAs to nanoparticles as well as our latest study on non-viral gene delivery using polyethylenimine-coated magnetic nanoparticles.  相似文献   
45.
A series of aromatic multiblock copolymers based on alternating segments of hydrophilic sulfonated polysulfone (PSU) and hydrophobic polyfluoroether (PFE) were prepared and characterized as proton exchange membranes. PSU precursor blocks were synthesized by polycondensation of dichlorodiphenylsulfone and resorcinol, and PFE precursor blocks were prepared by combining decafluorobiphenyl and isopropylidenediphenol. After preparation of the multiblock copolymers via a mild coupling reaction of the precursor blocks, the resorcinol units of the PSU blocks were selectively and almost completely sulfonated under mild reaction conditions using trimethylsilylchlorosulfonate. Transparent and robust membranes with different PSU-PFE copolymer compositions and ion-exchange capacities were cast from solution. Atomic force microscopy of the membranes revealed a distinct nanophase separated morphology. At 80 °C, the proton conductivity reached 10 mS cm−1 under 65% relative humidity and 100 mS cm−1 under fully hydrated conditions.  相似文献   
46.
We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.  相似文献   
47.
Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a CO2 laser to produce the wear resistant composite layer. The macro and microstructural changes of an alloyed layer with the traveling speeds of laser beam, the precipitate morphology of TiC particulate and the hardness profile of the alloyed layer was examined. From the results, it was possible to composite TiC particulate on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of the laser remelted cast iron substrate without a titanium coating was about 1 × 104 K/s to 1 × 105 K/s in the order under the condition of this study. The microstructure of the alloyed layer consisted of three zones; the TiC particulate precipitate zone (MHV 400–500), the mixed zone of TiC particulate + ledeburite (MHV 650–900) and the ledeburite zone (MHV 500–700). TiC particulates were precipitated as a typical dendritic morphology. The secondary TiC dendrite arms were grown to a polygonized shape and were necking. Then the separated arms became cubic crystal of TiC at the slowly solidified zone. In the rapidly solidified zone near the fusion boundary, however the fine granular TiC particulates were grouped like grapes.  相似文献   
48.
Amorphous Si (a-Si) films with lower hydrogen contents show better adhesion to glass during flash lamp annealing (FLA). The 2.0 µm-thick a-Si films deposited by plasma-enhanced chemical vapor deposition (PECVD), containing 10% hydrogen, start to peel off even at a lamp irradiance lower than that required for crystallization, whereas a-Si films deposited by catalytic CVD (Cat-CVD) partially adhere even after crystallization. Dehydrogenated Cat-CVD a-Si films show much better adhesion to glass, and are converted to polycrystalline Si (poly-Si) without serious peeling, but are accompanied by the generation of crack-like structures. These facts demonstrate the superiority of as-deposited Cat-CVD a-Si films as a precursor material for micrometer-thick poly-Si formed by FLA.  相似文献   
49.
Developing photoactivatable theranostic platforms with integrated functionalities of biocompatibility, targeting, imaging contrast, and therapy is a promising approach for cancer diagnosis and therapy. Here, we report a theranostic agent based on a hybrid nanoparticle comprising fullerene nanocrystals and gold nanoparticles (FGNPs) for photoacoustic imaging and photothermal therapy. Compared to gold nanoparticles and fullerene crystals, FGNPs exhibited stronger photoacoustic signals and photothermal heating characteristics by irradiating light with an optimal wavelength. Our studies demonstrated that FGNPs could kill cancer cells due to their photothermal heating characteristics in vitro. Moreover, FGNPs that are accumulated in tumor tissue via the enhanced permeation and retention effect can visualize tumor tissue due to their photoacoustic signal in tumor xenograft model mice. The theranostic agent with FGNPs shows promise for cancer therapy.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号