首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3552篇
  免费   103篇
  国内免费   12篇
电工技术   44篇
综合类   12篇
化学工业   664篇
金属工艺   118篇
机械仪表   129篇
建筑科学   74篇
矿业工程   12篇
能源动力   354篇
轻工业   375篇
水利工程   22篇
石油天然气   11篇
无线电   322篇
一般工业技术   770篇
冶金工业   252篇
原子能技术   18篇
自动化技术   490篇
  2024年   11篇
  2023年   53篇
  2022年   131篇
  2021年   127篇
  2020年   116篇
  2019年   113篇
  2018年   155篇
  2017年   140篇
  2016年   139篇
  2015年   72篇
  2014年   138篇
  2013年   311篇
  2012年   171篇
  2011年   227篇
  2010年   164篇
  2009年   174篇
  2008年   142篇
  2007年   133篇
  2006年   81篇
  2005年   81篇
  2004年   66篇
  2003年   64篇
  2002年   57篇
  2001年   34篇
  2000年   29篇
  1999年   36篇
  1998年   55篇
  1997年   52篇
  1996年   45篇
  1995年   38篇
  1994年   32篇
  1993年   34篇
  1992年   28篇
  1991年   37篇
  1990年   23篇
  1989年   31篇
  1988年   27篇
  1987年   23篇
  1986年   26篇
  1985年   32篇
  1984年   32篇
  1983年   31篇
  1982年   20篇
  1981年   26篇
  1980年   19篇
  1979年   19篇
  1976年   18篇
  1974年   11篇
  1973年   10篇
  1971年   6篇
排序方式: 共有3667条查询结果,搜索用时 15 毫秒
111.
Mayo JT  Lee SS  Yavuz CT  Yu WW  Prakash A  Falkner JC  Colvin VL 《Nanoscale》2011,3(11):4560-4563
The size-dependent magnetic properties of nanocrystals are exploited in a separation process that distinguishes particles based on their diameter. By varying the magnetic field strength, four populations of magnetic materials were isolated from a mixture. This separation is most effective for nanocrystals with diameters between 4 and 16 nm.  相似文献   
112.
Rajkiran R. Tiwari 《Polymer》2011,52(24):5595-5605
Room temperature Izod impact strength was determined for polypropylene (PP)/ethylene-co-octene elastomer (EOR) blends and nanocomposites, containing organoclays based on montmorillonite (MMT), at fixed elastomer content of 30 wt% and 0-7 wt% MMT. A ratio of maleated polypropylene, PP-g-MA to organoclay of unity was used as a compatibilizer in the nanocomposites. The organoclay serves to reduce the size of the EOR dispersed phase particles and facilitates toughening. The Izod impact strength is also influenced by the molecular weight of PP, elastomer octene content, elastomer MFI in addition to MMT content. Nanocomposites based on a low molecular weight polypropylene (L-PP) containing a higher octene content elastomer showed higher impact strength at lower MMT contents compared to those based on a low octene content elastomer. The effect of elastomer octene content on impact strength of high molecular weight polypropylene (H-PP) nanocomposites is not so significant. Elastomers having a melt flow index (MFI) in the range of 0.5-1.0 showed significant improvement in the impact strength of L-PP based nanocomposites. Most H-PP/EOR blends gave ‘super-tough’ materials without MMT and maintain this toughness in the presence of MMT. The critical elastomer particle size below which the toughness is observed is reduced by decreasing the octene content of the elastomer. For the similar elastomer particle sizes in nanocomposites, the impact strength varies as H-PP > M-PP > L-PP. The tensile modulus and yield strength improved with increasing MMT content; however, elongation at break was reduced. The extruder-made TPO showed a good-balance of properties in the presence of MMT compared to reactor-made TPO having similar modulus and elastomer content.  相似文献   
113.
Poly(ether ether ketone)s and poly(ether ether ketone ketone)s containing pendant pentadecyl chains were synthesized by polycondensation of each of the two bisphenol monomers viz, 1,1,1‐[bis(4‐hydroxyphenyl)‐4′‐pentadecylphenyl]ethane and 1,1‐bis(4‐hydroxyphenyl)‐3‐pentadecyl cyclohexane with activated aromatic dihalides namely, 4,4′‐difluorobenzophenone, and 1,3‐bis(4‐fluorobenzoyl)benzene in a solvent mixture of N,N‐dimethylacetamide and toluene, in the presence of anhydrous potassium carbonate. Polymers were isolated as white fibrous materials with inherent viscosities and number average molecular weights in the range 0.70–1.27 dL g?1 and 76,620–1,36,720, respectively. Poly(ether ether ketone)s and poly(ether ether ketone ketone)s were found to be soluble at room temperature in organic solvents such as chloroform, dichloromethane, tetrahydrofuran, and pyridine and could be cast into tough, transparent, and flexible films from their solutions in chloroform. Wide angle X‐ray diffraction patterns exhibited a broad halo at around 2θ = ~ 19° indicating that the polymers containing pentadecyl chains were amorphous in nature. In the small‐angle region, diffuse reflections of a typically layered structures resulting from the packing of pentadecyl side chains were observed. The temperature at 10% weight loss, obtained from TG curves, for poly(ether ether ketone)s and poly(ether ether ketone ketone)s were in the range 416–459°C, indicating their good thermal stability. A substantial drop in glass transition temperatures (68–78°C) was observed for poly(ether ether ketone)s and poly(ether ether ketone ketone)s due to “internal plasticization” effect of flexible pendant pentadecyl chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
114.
High‐performance printed circuit board or electronic packaging substrate with low warping particularly at high frequency is the key demand of manufacturers. In the present work, poly(etheretherketone) (PEEK) matrix composites reinforced with untreated micron size aluminum nitride (AlN) and alumina (Al2O3) particles have been studied for dynamic modulus in the temperature range varying from 30 to 250°C. At 48 vol % particles, the room temperature modulus of the PEEK/AlN composites increased by approximately fivefold (~ 23 GPa), whereas it increased by twofold for PEEK/Al2O3 composite. The reinforcing efficiency is more pronounced at higher temperatures. The significant improvement in modulus was attributed to the better adhesion between the matrix and the AlN particles. Scanning electron microscope (SEM) and Kubat parameter showed that the poor adhesion between the matrix and the Al2O3 particles resulted in comparatively smaller increase in modulus of PEEK/Al2O3, despite higher intrinsic modulus of Al2O3 than that of AlN. SEM showed almost uniform distribution of particles in the matrix. The experimental data were correlated with several theoretical models. The Halpin–Tsai model with ξ (xi) is equal to four correlates well up to 48 vol % AlN composites while ξ is equal to two correlates only up to 18 vol % Al2O3 composites. Guth–Smallwood model also correlates well up to 28 vol % AlN and 18 vol % Al2O3‐filled composites. Thereafter, data deviated from it due to the particles tendency to aggregate formation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
115.
In the present work, the impact of microwave pretreatment on the thermal degradation of color (chlorophylls) in mustard greens was studied. The drying experiments were conducted in the range of temperatures from 50 to 80°C. The degradation in the levels of chlorophylls has been quantified using Hunter color values (L*, a*, and b*) and calculating total color difference (ΔE). From the color results, the changes in color values (L*, a*, and b*) were observed as inappreciable, and changes in ΔE were found to be increased during drying. Analysis of kinetic data displayed a first-order reaction kinetics for chlorophyll degradation. Arrhenius equation was used to calculate the activation energies for rate constants, and it has been varied from 13.3 to 27.4?kJ/mol. Thermodynamic parameters, enthalpy of activation (ΔH#), and entropy activation (ΔS#) were found to be in the range of 1.40–2.63?J/mol and ?293 to ?305?J/mol?·?K, respectively. The data from the present work revealed that the microwave pretreatment of mustard greens remarkably influenced the retention of chlorophylls in the final dehydrated powder.  相似文献   
116.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879.  相似文献   
117.
P. M.  Gopal  K.  Soorya Prakash 《SILICON》2019,11(3):1429-1440
Silicon - The current work presents an experimental investigation and multi objective optimization of material and WEDM machining features for better surface finish (Ra) and material removal rate...  相似文献   
118.
Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.  相似文献   
119.
Electrospinning of protein‐loaded fibers faces many challenges, e.g. burst release owing to segregation of the protein on the fiber surface, loss of activity due to electrospinning conditions, limitation of loading capacity etc. Core–shell electrospinning provides an effective way to electrospin fibers wherein the core can be loaded with bioactive molecules in friendly conditions of a compatible polymer solution, thereby protecting the molecules from the electrostatic field and organic solvent of shell solutions. The shell polymer, after the electrospinning, acts as a barrier to control the release of the loaded molecules. However, the limitation of loading capacity still remains due the prerequisite of using an additional polymer as additive to achieve the minimum viscosity of the core solution required for viscous drag by the shell solution being drawn by the electrostatic force. The work reported here aims to alleviate the need of a polymer additive by using aqueous protein solutions of very high concentration. High concentrations of protein solutions were successfully electrospun as the core of the protein–poly(lactide‐co‐glycolic acid) core–shell fibers. A partitioning effect was seen in the controlled release of hydrophilic proteins as they were retained in the aqueous core for longer times. Using lysozyme as a model protein, it was shown that the activity is significantly retained after electrospinning, compared with electrospinning in monolithic fibers. Moreover, the lysozyme activity was also comparable with the lysozyme released from core–shell fibers spun using poly(vinyl acetate) as additive in the core. Copyright © 2012 Society of Chemical Industry  相似文献   
120.
In present study,we report the preparation of coconut shell activated carbon as adsorbent and its appli-cation for Bi(Ⅲ) removal from aqueous solutions.The developed adsorbent was characterized with scanning elec-tron microscope(SEM),Fourier Transform Infrared(FTIR),C,H,N,S analyzer,and BET surface area analyzer.The parameters examined include agitation time,initial concentration of Bi(Ⅲ),adsorbent dose and temperature.The maximum adsorption of Bi(Ⅲ)(98.72%) was observed at 250 mg·L-1 of Bi(Ⅲ) and adsorbent dose of 0.7 g when agitation was at 160 r·min-1 for 240 min at(299±2) K.The thermodynamic parameters such as Gibb’s free energy(△Gθ),enthalpy(△Hθ) and entropy(△Sθ) were evaluated.For the isotherm models applied to adsorption study,the Langmuir isotherm model fits better than the Freundlich isotherm.The maximum adsorption capacity from the Langmuir isotherm was 54.35 mg?g?1 of Bi(Ⅲ).The kinetic study of the adsorption shows that the pseudo second order model is more appropriate than the pseudo first order model.The result shows that,coconut shell ac-tivated carbon is an effective adsorbent to remove Bi(Ⅲ) from aqueous solutions with good adsorption capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号