首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   35篇
  国内免费   13篇
电工技术   35篇
化学工业   180篇
金属工艺   15篇
机械仪表   28篇
建筑科学   9篇
矿业工程   1篇
能源动力   42篇
轻工业   41篇
水利工程   17篇
石油天然气   3篇
无线电   78篇
一般工业技术   165篇
冶金工业   71篇
自动化技术   175篇
  2024年   6篇
  2023年   16篇
  2022年   31篇
  2021年   35篇
  2020年   29篇
  2019年   32篇
  2018年   40篇
  2017年   33篇
  2016年   37篇
  2015年   38篇
  2014年   33篇
  2013年   66篇
  2012年   44篇
  2011年   45篇
  2010年   46篇
  2009年   47篇
  2008年   29篇
  2007年   23篇
  2006年   21篇
  2005年   18篇
  2004年   13篇
  2003年   16篇
  2002年   18篇
  2001年   15篇
  2000年   11篇
  1999年   11篇
  1998年   12篇
  1997年   16篇
  1996年   12篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1970年   3篇
  1969年   2篇
排序方式: 共有860条查询结果,搜索用时 15 毫秒
101.
The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.  相似文献   
102.
SrxBa1-xNb2O6 (with x = 0.4, 0.5 and 0.6) powders have been prepared by thermolysis of aqueous precursor solutions consisting of triethanolamine (TEA), niobium tartarate and, EDTA complexes of strontium and barium ions. Complete evaporation of the precursor solution by heating at ∼ 200°C, yields in a fluffy, mesoporous carbon rich precursor material, which on calcination at 750°C/2 h has resulted in the pure SBN powders. The crystallite and average particle sizes are found to be around 15 nm and 20 nm, respectively.  相似文献   
103.
Endothelial nitric-oxide synthase (eNOS) is an important regulator of endothelial function and vascular tone in biological tissues. While endothelial dysfunction occurs following ischemia and has been attributed to altered NO. formation, the biochemical basis for this dysfunction is unknown. Therefore, studies were performed to determine the effects of myocardial ischemia and reperfusion on eNOS in isolated rat hearts subjected to periods of global ischemia or ischemia followed by reperfusion. eNOS activity was assayed by L-[14C]arginine to L-[14C]citrulline conversion and alterations in the amount and distribution of eNOS determined by Western blotting and immunohistochemistry. While activity was preserved after 30 min of ischemia with a value of 1.1 +/- 0.1 pmol x min-1 x mg of protein-1, it decreased by 77% after 60 min and became nearly undetectable after 120 min. Reperfusion resulted in only a partial restoration of activity. The decline in activity with ischemia was due, in part, to a loss of eNOS protein. Hemodynamic studies showed that the onset of impaired vascular reactivity paralleled the loss of functional eNOS. Subjecting isolated eNOS to conditions of acidosis, which occur during ischemia, followed by restoration of pH as occurs on reperfusion, caused a combination of reversible and irreversible loss of activity similar to that seen in ischemic and reperfused hearts. Thus, loss of endothelial function following ischemia is paralleled by a loss of eNOS activity due to a combination of pH-dependent denaturation and proteolysis.  相似文献   
104.
When oxygen delivery (DO2) critically decreases, oxygen consumption (VO2) becomes supply dependent. We examined whether end-tidal PCO2 (PetCO2) would identify supply dependency during shock. Five dogs (Group I) underwent progressive hemorrhage to decrease DO2 until they could no longer maintain a stable blood pressure. Five additional animals (Group II) were bled until VO2 decreased to 70% of baseline, followed by resuscitation. The PetCO2 versus time inflection point was compared with the DO2 at onset of supply dependency (DO2crit). DO2crit for Groups I and II were 6.9 +/- .4 and 8.1 +/- 1.3, respectively (p = NS), and not statistically different from the DO2 values at which PetCO2 decreased (6.6 +/- .7 and 6.3 +/- .7 mL/kg per min, respectively). AT constant minute volume, PetCO2 effectively indicated the onset of supply dependency and rapidly increased during resuscitation, paralleling the changes in VO2 in this model of hemorrhagic shock.  相似文献   
105.
106.
Permanent-magnet synchronous motor (PMSM) drives are widely used for high-performance industrial servo applications where torque smoothness is an essential requirement. However, one disadvantage of PMSM is parasitic torque pulsations, which induce speed oscillation that deteriorates the drive performance particularly at low-speeds. To suppress these speed ripples, two iterative learning control (ILC) schemes implemented in the time domain and frequency domain respectively are proposed in this paper. Although a conventional proportional-integral (PI) speed controller does suppress speed ripples to a certain extent, it is not adequate for many high performance applications. Thus, the proposed plug-in ILC controller is applied in conjunction with a PI speed controller to further reduce the periodic speed ripples. Experimental verification of the two schemes is carried out, and test results obtained demonstrate that the scheme implemented in frequency domain has better performance in reducing speed ripples than that implemented in time domain because of the elimination of forgetting factor that is indispensable for robustness in time domain learning method.  相似文献   
107.
108.
109.
Ternary cobalt-nickel silicide thin films were synthesized by DC magnetron sputtering from an equiatomic cobalt-nickel alloy target. Grazing incidence XRD, Rutherford back scattering, high-resolution cross-sectional TEM analysis and electrical study were carried out to investigate the formation of silicide, stoichiometry, film thickness, depth profile and sheet resistance of as-deposited and post-deposition annealed films. The ternary silicide layer thickness was calculated from RBS simulated data, which was found to vary 20-43 nm for as-deposited and different vacuum annealed films. A minimum value of sheet resistance 2.73 Ω/sq corresponding to a resistivity of ∼8.4 μΩ-cm was obtained for optimized deposition and annealing conditions.  相似文献   
110.
This paper analyses carbon dioxide (CO2) emissions of the Indian economy by producing sectors and due to household final consumption. The analysis is based on an Input–Output (IO) table and Social Accounting Matrix (SAM) for the year 2003–04 that distinguishes 25 sectors and 10 household classes. Total emissions of the Indian economy in 2003–04 are estimated to be 1217 million tons (MT) of CO2, of which 57% is due to the use of coal and lignite. The per capita emissions turn out to be about 1.14 tons. The highest direct emissions are due to electricity sector followed by manufacturing, steel and road transportation. Final demands for construction and manufacturing sectors account for the highest emissions considering both direct and indirect emissions as the outputs from almost all the energy-intensive sectors go into the production process of these two sectors. In terms of life style differences across income classes, the urban top 10% accounts for emissions of 3416 kg per year while rural bottom 10% class accounts for only 141 kg per year. The CO2 emission embodied in the consumption basket of top 10% of the population in urban India is one-sixth of the per capita emission generated in the US.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号