首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37027篇
  免费   14078篇
电工技术   713篇
化学工业   16834篇
金属工艺   301篇
机械仪表   690篇
建筑科学   1658篇
能源动力   802篇
轻工业   6998篇
水利工程   282篇
石油天然气   43篇
无线电   6765篇
一般工业技术   11233篇
冶金工业   525篇
原子能技术   1篇
自动化技术   4260篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   191篇
  2020年   1417篇
  2019年   3160篇
  2018年   3080篇
  2017年   3404篇
  2016年   3863篇
  2015年   3935篇
  2014年   3837篇
  2013年   4910篇
  2012年   2636篇
  2011年   2262篇
  2010年   2582篇
  2009年   2457篇
  2008年   2001篇
  2007年   1852篇
  2006年   1612篇
  2005年   1342篇
  2004年   1314篇
  2003年   1286篇
  2002年   1232篇
  2001年   1080篇
  2000年   1054篇
  1999年   442篇
  1998年   27篇
  1997年   32篇
  1996年   10篇
  1995年   7篇
  1994年   14篇
  1993年   9篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1890年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
A central event in the life of a cellular system is the interaction between the exterior and the interior compartments. Biochemical signals arrive at the cellular surface, bind to their membrane bound receptor followed by a conformational change triggering the release of an internal chemical or electrical signal.This basic principle is followed by all our perceptive abilities like sense of smell or taste, but also by different signal transduction pathways involved in nerve conductivity, vision, sense of touch or hearing. To follow and mimic this principle of parallel registration is one of the aims of modern nanobiotechnology. If we are able to specifically biofunctionalize small arrays of a solid surface, which could be an electrode or a semiconductor, this approach will enable us to build up devices called “biochips” or “biosensors” that allow the determination of bioactive molecules with high specificity at lowest concentrations. Potential pharmacological active substrates might be screened as well as new receptors may be determined. Applications in genomics as well as proteomics are realistic. The major prerequisite for such a broad spectrum of applications is the fabrication of receptive surfaces. Biomolecules have to be surface‐adsorbed in a highly reproducible, oriented and well organised fashion, a task which in biology is taken by the cellular membranes as external or internal receptive surfaces. The physical principles like hydrogen bonds, electrostatic or hydrophobic interactions that lead to such an organized surface are well known. To synthesize molecular building blocks and to position them onto an otherwise unspecific surface is one of the challenges of nanobiotechnology combining biological knowledge and chemical skills with biophysical techniques that allow to handle or analyze even single molecules.  相似文献   
62.
From its foundation until 2004, ETRI has registered over 1,000 US patents. This letter analyzes the characteristics of these patents and addresses the explanatory factors affecting their citation counts. For explanatory variables, research team related variables, invention specific variables, and geographical domain related variables are suggested. Zero‐altered count data models are used to test the impact of independent variables. A key finding is that technological cumulativeness, the scale of invention, outputs in the electronic field, and the degree of dependence on the US technology domain positively affect the citation counts of ETRI‐invented US patents. The magnitude of international presence appears to negatively affect the citation counts of ETRI‐invented US patents.  相似文献   
63.
64.
A route to synthesize ZSM‐5 crystals with a bimodal micro/mesoscopic pore system has been developed in this study; the successful incorporation of the mesopores within the ZSM‐5 structure was performed using tetrapropylammonium hydroxide (TPAOH)‐impregnated mesoporous materials containing carbon nanotubes in the pores, which were encapsulated in the ZSM‐5 crystals during a solid rearrangement process within the framework. Such mesoporous ZSM‐5 zeolites can be readily obtained as powders, thin films, or monoliths.  相似文献   
65.
The probing of the micromechanical properties within a two‐dimensional polymer structure with sixfold symmetry fabricated via interference lithography reveals a nonuniform spatial distribution in the elastic modulus “imprinted” with an interference pattern in work reported by Tsukruk, Thomas, and co‐workers on p. 1324. The image prepared by M. Lemieux and T. Gorishnyy shows how the interference pattern is formed by three laser beams and is transferred to the solid polymer structure. The elastic and plastic properties within a two‐dimensional polymer (SU8) structure with sixfold symmetry fabricated via interference lithography are presented. There is a nonuniform spatial distribution in the elastic modulus, with a higher elastic modulus obtained for nodes (brightest regions in the laser interference pattern) and a lower elastic modulus for beams (darkest regions in the laser interference pattern) of the photopatterned films. We suggest that such a nonuniformity and unusual plastic behavior are related to the variable material properties “imprinted” by the interference pattern.  相似文献   
66.
Polyaryloxydiphenylsilanes were prepared from phosphorus‐containing diols and diphenydichlorolsilane through solution polymerization. With a stoichiometric imbalance in feed monomers, the resulting polymers exhibited moderate melting points and good processing properties. The polymers prepared showed initial decomposition temperatures above 340 °C, excellent thermal stability, high char yields at 850 °C and very high limited oxygen index values of 56–59. The polymers' char yields and their (P + Si) contents showed linear relationships. © 2003 Society of Chemical Industry  相似文献   
67.
Three different configurations of Au‐nanoparticle/CdS‐nanoparticle arrays are organized on Au/quartz electrodes for enhanced photocurrent generation. In one configuration, Au‐nanoparticles are covalently linked to the electrode and the CdS‐nanoparticles are covalently linked to the bare Au‐nanoparticle assembly. The resulting photocurrent, φ = 7.5 %, is ca. 9‐fold higher than the photocurrent originating from a CdS‐nanoparticle layer that lacks the Au‐nanoparticles, φ = 0.8 %. The enhanced photocurrent in the Au/CdS nanoparticle array is attributed to effective charge separation of the electron–hole pair by the injection of conduction‐band electrons from the CdS‐ to the Au‐nanoparticles. Two other configurations involving electrostatically stabilized bipyridinium‐crosslinked Au/CdS or CdS/Au nanoparticle arrays were assembled on the Au/quartz crystal. The photocurrent quantum yields in the two systems are φ = 10 % and φ = 5 %, respectively. The photocurrents in control systems that include electrostatically bridged Au/CdS or CdS/Au nanoparticles by oligocationic units that lack electron‐acceptor units are substantially lower than the values observed in the analogous bipyridinium‐bridged systems. The enhanced photocurrents in the bipyridinium‐crosslinked systems is attributed to the stepwise electron transfer of conduction‐band electrons to the Au‐nanoparticles by the bipyridinium relay bridge, a process that stabilizes the electron–hole pair against recombination and leads to effective charge separation.  相似文献   
68.
The synthesis of powders with controlled shape and narrow particle size distributions is still a major challenge for many industries. A continuous Segmented Flow Tubular Reactor (SFTR) has been developed to overcome homogeneity and scale‐up problems encountered when using batch reactors. Supersaturation is created by mixing the co‐reactants in a micromixer inducing precipitation; the suspension is then segmented into identical micro‐volumes by a non‐miscible fluid and sent through a tube. These micro‐volumes are more homogeneous when compared to large batch reactors leading to narrower size distributions, better particle morphology, polymorph selectivity and stoichiometry. All these features have been demonstrated on single tube SFTR for different chemical systems. To increase productivity for commercial application the SFTR is being “scaled‐out” by multiplying the number of tubes running in parallel instead of scaling‐up by increasing their size. The versatility of the multi‐tube unit will allow changes in type of precipitate with a minimum of new investment as new chemistry can be researched, developed and optimised in a single tube SFTR and then transferred to the multi‐tube unit for powder production.  相似文献   
69.
Dye‐loaded AlPO4‐5 single crystals were prepared by microwave‐assisted hydrothermal synthesis from a batch, containing a mixture of three chromophores (Coumarin 40, Rhodamine BE50, and Oxazine 1) differing in their absorption range, molecular dimensions, and solubilities. Confocal fluorescence images reveal a spatial separation effect of the dye molecules, where the slimmer, more‐soluble dye molecule (Coumarin 40) is uniformly distributed in the body of the single crystal, and the bulky and/or less‐soluble ones (Rhodamine BE50, Oxazine 1) are situated in distinct domains. Visible spectra show good panchromatic absorption of visible light. Fluorescence lifetime measurements indicate the presence of an energy transfer cascade of the entirely fixed dye molecules from Coumarin 40 to Oxazine 1. The transfer mechanism is predominantly radiative.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号