首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3693篇
  免费   236篇
  国内免费   1篇
电工技术   41篇
综合类   3篇
化学工业   1170篇
金属工艺   44篇
机械仪表   66篇
建筑科学   90篇
矿业工程   6篇
能源动力   98篇
轻工业   541篇
水利工程   25篇
石油天然气   7篇
无线电   235篇
一般工业技术   534篇
冶金工业   623篇
原子能技术   20篇
自动化技术   427篇
  2023年   38篇
  2022年   189篇
  2021年   238篇
  2020年   84篇
  2019年   115篇
  2018年   95篇
  2017年   104篇
  2016年   128篇
  2015年   102篇
  2014年   123篇
  2013年   207篇
  2012年   166篇
  2011年   234篇
  2010年   194篇
  2009年   145篇
  2008年   137篇
  2007年   135篇
  2006年   109篇
  2005年   96篇
  2004年   63篇
  2003年   66篇
  2002年   61篇
  2001年   44篇
  2000年   29篇
  1999年   47篇
  1998年   186篇
  1997年   105篇
  1996年   68篇
  1995年   50篇
  1994年   48篇
  1993年   46篇
  1992年   22篇
  1991年   24篇
  1990年   21篇
  1989年   26篇
  1988年   22篇
  1987年   31篇
  1986年   25篇
  1985年   25篇
  1984年   13篇
  1983年   21篇
  1982年   17篇
  1981年   30篇
  1980年   17篇
  1979年   11篇
  1978年   26篇
  1977年   24篇
  1976年   43篇
  1975年   14篇
  1974年   17篇
排序方式: 共有3930条查询结果,搜索用时 15 毫秒
71.
72.
Improvements made to the NASA Goddard Space Flight Center Stratospheric Ozone Lidar system have extended its atmospheric-aerosol-measuring capabilities. The methods by which aerosol-scattering ratio, aerosol backscatter, and aerosol extinction are simultaneously derived from lidar data are reported, and results obtained during several intercomparison campaigns at worldwide locations are shown. The results track the evolution of the Mt. Pinatubo aerosol cloud from 1991 to 1994 and report wavelength-dependence information for aerosol backscatter between 308 and 351 nm. Two analysis techniques, a more common inversion method and a combined elastic-Raman-backscatter approach, are also compared.  相似文献   
73.
Metal halide perovskite (MHP) semiconductors have driven a revolution in optoelectronic technologies over the last decade, in particular for high-efficiency photovoltaic applications. Low-dimensional MHPs presenting electronic confinement have promising additional prospects in light emission and quantum technologies. However, the optimisation of such applications requires a comprehensive understanding of the nature of charge carriers and their transport mechanisms. This study employs a combination of ultrafast optical and terahertz spectroscopy to investigate phonon energies, charge-carrier mobilities, and exciton formation in 2D (PEA)2PbI4 and (BA)2PbI4 (where PEA is phenylethylammonium and BA is butylammonium). Temperature-dependent measurements of free charge-carrier mobilities reveal band transport in these strongly confined semiconductors, with surprisingly high in-plane mobilities. Enhanced charge-phonon coupling is shown to reduce charge-carrier mobilities in (BA)2PbI4 with respect to (PEA)2PbI4. Exciton and free charge-carrier dynamics are disentangled by simultaneous monitoring of transient absorption and THz photoconductivity. A sustained free charge-carrier population is observed, surpassing the Saha equation predictions even at low temperature. These findings provide new insights into the temperature-dependent interplay of exciton and free-carrier populations in 2D MHPs. Furthermore, such sustained free charge-carrier population and high mobilities demonstrate the potential of these semiconductors for applications such as solar cells, transistors, and electrically driven light sources.  相似文献   
74.
The electrochemical CO2 reduction reaction (CO2RR) to value-added chemicals with renewable electricity is a promising method to decarbonize parts of the chemical industry. Recently, single metal atoms in nitrogen-doped carbon (MNC) have emerged as potential electrocatalysts for CO2RR to CO with high activity and faradaic efficiency, although the reaction limitation for CO2RR to CO is unclear. To understand the comparison of intrinsic activity of different MNCs, two catalysts are synthesized through a decoupled two-step synthesis approach of high temperature pyrolysis and low temperature metalation (Fe or Ni). The highly meso-porous structure results in the highest reported electrochemical active site utilization based on in situ nitrite stripping; up to 59±6% for NiNC. Ex situ X-ray absorption spectroscopy (XAS) confirms the penta-coordinated nature of the active sites. The catalysts are amongst the most active in the literature for CO2 reduction to CO. The density functional theory calculations (DFT) show that their binding to the reaction intermediates approximates to that of Au surfaces. However, it is found that the turnover frequencies (TOFs) of the most active catalysts for CO evolution converge, suggesting a fundamental ceiling to the catalytic rates.  相似文献   
75.
High-index dielectric nanostructures offer strong magnetic and electric resonances in the visible range and low optical losses, stimulating research interest in their use for light manipulation technologies. Lithographic fabrication of dielectric nanostructures, while providing precise control over the pattern dimensions, limits the scalability of this approach for practical applications due to an inefficient fabrication process and limited production quantity. Here, the colloidal synthesis of high-index chiral dielectric nanostructures with a broom-like geometry made from trigonal Se is demonstrated. The anisotropic morphology and crystal structure of Se nanobrooms enable both linearly and circularly polarized scattering, as well as spectrum variation along the particle axis, which is, to the authors’ knowledge, the first observation of such behavior from dielectric colloidal nanostructures. To show the versatility of the highly scattering Se NB suspensions, 2D and 3D printing of Se NB inks are demonstrated as a proof of concept. This approach provides a way to manipulate light using aqueous dispersions of high-index dielectric nanostructures, unlocking their potential to fit in various morphologies and dimensions in 2D and 3D for broad applications.  相似文献   
76.
Currently,sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients.Unfortunately,its side effects,particularly its overall toxicity,limit the therapeutic response that can be achieved.Superparamagnetic iron oxide nanoparticles (SPIONs) are very attractive for drug delivery because they can be targeted to specific sites in the body through application of a magnetic field,thus improving intratumoral accumulation and reducing adverse effects.Here,nanoformulations based on polyethylene glycol modified phospholipid micelles,loaded with both SPIONs and sorafenib,were successfully prepared and thoroughly investigated by complementary techniques.This nanovector system provided effective drug delivery,had an average hydrodynamic diameter of about 125 nm,had good stability in aqueous medium,and allowed controlled drug loading.Magnetic analysis allowed accurate determination of the amount of SPIONs embedded in each micelle.An in vitro system was designed to test whether the SPION micelles can be efficiently held using a magnetic field under typical flow conditions found in the human liver.Human hepatocellular carcinoma (HepG2) cells were selected as an in vitro system to evaluate tumor cell targeting efficacy of the superparamagnetic micelles loaded with sorafenib.These experiments demonstrated that this delivery platform is able to enhance sorafenib's antitumor effectiveness by magnetic targeting.The magnetic nanovectors described here represent promising candidates for targeting specific hepatic tumor sites,where selective release of sorafenib can improve its efficacy and safety profile.  相似文献   
77.
78.
Abstract

Ciprofloxacin is a drug active against a broad spectrum of aerobic Gram-positive and Gram-negative bacteria, for the therapy of ocular infections. It requires frequent administrations owing to rapid ocular clearance and it is a good candidate for ocular controlled release formulations. The preparation of such drug release systems is still a challenge. Ionic interactions between ciprofloxacin and the polyelectrolytes chondroitin sulfate or lambda carrageenan result in coprecipitates that can act as microparticulate controlled release systems from which the drug is released after being displaced by the medium’s ions. In some formulations, Carbopol was added to improve the mucoadhesive properties. The aim of this research was the study of the influence of the technological parameters of the preparation method of coprecipitates on their particle size, with the goal of achieving particles engineered with a size suitable for the ocular administration. Technological parameters taken into account were: concentration of drug and polymer solutions utilized for the preparation of interaction products, possible use of surfactants (kind and concentration), temperature of the solutions and stirring during the process of preparation of the coprecipitates. Preliminary stability study tests were carried out to further characterize the leader formulation. Particle size in suspensions for ocular drug delivery is a critical parameter influencing the quality of the formulation. The results obtained from this study show that chondroitin sulfate coprecipitates present the best characteristics in terms of particle size suitable for ocular administration. A further improvement of the particle size characteristics has been obtained with the addition of surfactants.  相似文献   
79.
80.
Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Previous researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of operative constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only partially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD – STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies performed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and storage of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable samples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号