Structural alterations anisotropy-based measured for different areas for the most common types of dementia diseases could be a biomarker of brain impairment. The current work aims to assess whether texture anisotropy can discriminate both healthy versus Alzheimer’s and Pick’s patients based on regional evaluation while maintaining high predictive power. The investigated area is reduced from the whole-brain surface to three major lobes (i.e., frontal, temporal and parietal). A predictive model was proposed to associate a disease with a specific area in the brain based on the anisotropy values. Simultaneous analysis of 1680 measurements from 105 brain magnetic resonance images acquired as T2w and PD sequences was performed to establish the significance of the model. The cerebral calcinosis disease has been used as artificial ground truth. The association based on textural anisotropy between targeted diseases and control patients was performed by using Pearson’s correlation coefficients. A new proposed consistency index investigated the texture anisotropy relevance for all image’s types and all analyzed classes and regions. The validation study is based on area under the receiver-operating characteristic curve that depicted the overall diagnostic performance of the texture anisotropy in each region. The proposed model demonstrated that texture anisotropy is accurate solution in diagnosis of Alzheimer’s and Pick’s diseases when the investigated area is reduced to major lobes, with sensitivity >90% and specificity >80%.
An analysis of the hardness of resolution of random 3-SAT instances using the Davis-Putnam-Loveland-Logemann (DPLL) algorithm slightly below threshold is presented. While finding a solution for such instances demands exponential effort with high probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly in the size of the instance only. We compute analytically this exponentially small probability of easy resolutions from a large deviation analysis of DPLL with the Generalized Unit Clause search heuristic, and show that the corresponding exponent is smaller (in absolute value) than the growth exponent of the typical resolution time. Our study therefore gives some quantitative basis to heuristic restart solving procedures, and suggests a natural cut-off cost (the size of the instance) for the restart. 相似文献
Motif patterns consisting of sequences of intermixed solid and don’t-care characters have been introduced and studied in connection with pattern discovery problems of computational biology and other domains. In order to alleviate the exponential growth of such motifs, notions of maximal saturation and irredundancy have been formulated, whereby more or less compact subsets of the set of all motifs can be extracted, that are capable of expressing all others by suitable combinations. In this paper, we introduce the notion of maximal irredundant motifs in a two-dimensional array and develop initial properties and a combinatorial argument that poses a linear bound on the total number of such motifs. The remainder of the paper presents approaches to the discovery of irredundant motifs both by offline and incremental algorithms. 相似文献
Heavy metal biosorption onto solid wastes from olive oil production plants, olive pomace, has been investigated. Acid-base properties of the active sites of olive pomace were determined by potentiometric titrations and represented by a continuous model accounting for two main kinds of active sites. Competition among protons and heavy metals in solution was considered by performing biosorption tests at different equilibrium pH with single (Cu and Cd) and binary metal systems (Cu-Cd). Both Langmuir extensions and non-ideal competitive adsorption models (NICA models) can be used to represent experimental data of Cu and Cd biosorption in single metal systems at different equilibrium pH. Nevertheless only NICA models, accounting for site heterogeneity and non-ideal adsorption of the different species simultaneously present in solution, can adequately simulate the competition among Cu and Cd in binary metal systems by using the parameters fitted to single system data. 相似文献
The endoplasmic reticulum (ER) is a dynamic structure, playing multiple roles including calcium storage, protein synthesis and lipid metabolism. During cellular stress, variations in ER homeostasis and its functioning occur. This condition is referred as ER stress and generates a cascade of signaling events termed unfolded protein response (UPR), activated as adaptative response to mitigate the ER stress condition. In this regard, calcium levels play a pivotal role in ER homeostasis and therefore in cell fate regulation since calcium signaling is implicated in a plethora of physiological processes, but also in disease conditions such as neurodegeneration, cancer and metabolic disorders. A large body of emerging evidence highlighted the functional role of TRP channels and their ability to promote cell survival or death depending on endoplasmic reticulum stress resolution, making them an attractive target. Thus, in this review we focused on the TRP channels’ correlation to UPR-mediated ER stress in disease pathogenesis, providing an overview of their implication in the activation of this cellular response. 相似文献
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence that includes FP-RMS, harboring the fusion oncoprotein PAX3/7-FOXO1 and FN-RMS, often mutant in the RAS pathway. Risk stratifications of RMS patients determine different prognostic groups and related therapeutic treatment. Current multimodal therapeutic strategies involve surgery, chemotherapy (CHT) and radiotherapy (RT), but despite the deeper knowledge of response mechanisms underpinning CHT treatment and the technological improvements that characterize RT, local failures and recurrence frequently occur. This review sums up the RMS classification and the management of RMS patients, with special attention to RT treatment and possible radiosensitizing strategies for RMS tumors. Indeed, RMS radioresistance is a clinical problem and further studies aimed at dissecting radioresistant molecular mechanisms are needed to identify specific targets to hit, thus improving RT-induced cytotoxicity. 相似文献
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system. 相似文献
The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32−) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32− biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in environmental biotechnology. However, their exploration in TeO32− biotransformation is scarce due to limited knowledge regarding oxyanion microbial processing. Here, this gap was filled by investigating the cell tolerance, adaptation, and response to TeO32− of a Micromonospora strain isolated from a metal(loid)-rich environment. To this aim, an integrated biological, physical-chemical, and statistical approach combining physiological and biochemical assays with confocal or scanning electron (SEM) microscopy and Fourier-transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR) was designed. Micromonospora cells exposed to TeO32− under different physiological states revealed a series of striking cell responses, such as cell morphology changes, extracellular polymeric substance production, cell membrane damages and modifications, oxidative stress burst, protein aggregation and phosphorylation, and superoxide dismutase induction. These results highlight this Micromonospora strain as an asset for biotechnological purposes. 相似文献