首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1481篇
  免费   117篇
  国内免费   4篇
电工技术   11篇
综合类   3篇
化学工业   550篇
金属工艺   29篇
机械仪表   39篇
建筑科学   34篇
能源动力   99篇
轻工业   252篇
水利工程   30篇
石油天然气   15篇
无线电   94篇
一般工业技术   197篇
冶金工业   24篇
原子能技术   5篇
自动化技术   220篇
  2024年   8篇
  2023年   31篇
  2022年   89篇
  2021年   148篇
  2020年   130篇
  2019年   118篇
  2018年   135篇
  2017年   141篇
  2016年   109篇
  2015年   58篇
  2014年   115篇
  2013年   147篇
  2012年   104篇
  2011年   89篇
  2010年   52篇
  2009年   35篇
  2008年   32篇
  2007年   19篇
  2006年   9篇
  2005年   11篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1602条查询结果,搜索用时 15 毫秒
11.

Self-organizing networking (SON) is an automation technology designed to make the planning, configuration, management, optimization and healing of mobile radio access networks simpler and faster. Most current self-organization networking functions apply rule-based recommended systems to control network resources which seem too complicated and time-consuming to design in practical conditions. This research proposes a cognitive cellular network empowered by an efficient self-organization networking approach which enables SON functions to separately learn and find the best configuration setting. An effective learning approach is proposed for the functions of the cognitive cellular network, which exhibits how the framework is mapped to SON functions. One of the main functions applied in this framework is mobility load balancing. In this paper, a novel Stochastic Learning Automata has been suggested as the load balancing function in which approximately the same quality level is provided for each subscriber. This framework can also be effectively extended to cloud-based systems, where adaptive approaches are needed due to unpredictability of total accessible resources, considering cooperative nature of cloud environments. The results demonstrate that the function of mobility robustness optimization not only learns to optimize HO performance, but also it learns how to distribute excess load throughout the network. The experimental results demonstrate that the proposed scheme minimizes the number of unsatisfied subscribers (Nus) by moving some of the edge users served by overloaded cells towards one or more adjacent target cells. This solution can also guarantee a more balanced network using cell load sharing approach in addition to increase cell throughput outperform the current schemes.

  相似文献   
12.
Reducing the power consumption of a passive radio frequency identification (RFID) tag is the key in many applications. As the modulator is usually the most power-hungry block in an RFID tag, this paper proposes a power-saving modulator. The proposed modulator uses phase shift keying (PSK) backscatter modulation which allows tag to communicate data from its memory to a reader by PSK modulation. The proposed modulator uses a MOSCAP as a variable impedance and is designed in a new one-inverter structure in compare to the conventional varactor-based modulators designed in two-inverter structure, as this modulator needs just a low voltage swing to drive its MOSCAP. Using MOSCAP as the variable capacitance leads to a low voltage design. Also, the fundamental equations required for determination of the capacitive impedance seen by the antenna is presented. This impedance is the master key in modulator design. The modulator has been designed, simulated and optimized in 0.18 μm CMOS technology. All possible simulation results are presented to approve its compatible operation with C1 G2 EPC global standard. The power consumption of less than 46 nW is achieved in all process corner cases at 0.8 V power supply.  相似文献   
13.
Telecommunication Systems - In this paper, a physical-layer network coding (PNC) method is offered for a two-way relay network with spatial modulation (SM) for source node and relay node. For this...  相似文献   
14.
In this paper, we propose an energy‐efficient power control and harvesting time scheduling scheme for resource allocation of the subchannels in a nonorthogonal multiple access (NOMA)–based device‐to‐device (D2D) communications in cellular networks. In these networks, D2D users can communicate by sharing the radio resources assigned to cellular users (CUs). Device‐to‐device users harvest energy from the base station (BS) in the downlink and transmit information to their receivers. Using NOMA, more than one user can access the same frequency‐time resource simultaneously, and the signals of the multiusers can be separated successfully using successive interference cancellation (SIC). In fact, NOMA, unlike orthogonal multiple access (OMA) methods, allows sharing the same frequency resources at the same time by implementing adaptive power allocation. Our aim is to maximize the energy efficiency of the D2D pairs, which is the ratio of the achievable throughput of the D2D pairs to their energy consumption by allocating the proper subchannel of each cell to each device user equipment (DUE), managing their transmission power, and setting the harvesting and transmission time. The constraints of the problem are the quality of service of the CUs, minimum required throughput of the subchannels, and energy harvesting of DUEs. We formulate the problem and propose a low‐complexity iterative algorithm on the basis of the convex optimization method and Karush‐Kuhn‐Tucker conditions to obtain the optimal solution of the problem. Simulation results validate the performance of our proposed algorithm for different values of the system parameters.  相似文献   
15.
A low‐cost and easy‐to‐fabricate microchip remains a key challenge for the development of true point‐of‐care (POC) diagnostics. Cellulose paper and plastic are thin, light, flexible, and abundant raw materials, which make them excellent substrates for mass production of POC devices. Herein, a hybrid paper–plastic microchip (PPMC) is developed, which can be used for both single and multiplexed detection of different targets, providing flexibility in the design and fabrication of the microchip. The developed PPMC with printed electronics is evaluated for sensitive and reliable detection of a broad range of targets, such as liver and colon cancer protein biomarkers, intact Zika virus, and human papillomavirus nucleic acid amplicons. The presented approach allows a highly specific detection of the tested targets with detection limits as low as 102 ng mL?1 for protein biomarkers, 103 particle per milliliter for virus particles, and 102 copies per microliter for a target nucleic acid. This approach can potentially be considered for the development of inexpensive and stable POC microchip diagnostics and is suitable for the detection of a wide range of microbial infections and cancer biomarkers.  相似文献   
16.
Intravascular ultrasound (IVUS) is clinically available for visualizing coronary arteries. However, it suffers from acoustic shadow areas and ring-down artifacts as two of the common issues in IVUS images. This paper introduces an approach which can overcome these limitations. As shadow areas were displayed behind hard plaques in the IVUS grayscale images, calcified plaques were first segmented by using Otsu threshold. Then, active contour, histogram matching, and local histogram matching are implemented. In addition, a new modified circle Hough transform is introduced to remove the ring-down artifacts from IVUS images. In order to evaluate the efficacy of this new method in detection of shadow and ring-down regions, 300 IVUS images are considered. Sensitivity of 89% and specificity of 92% are achieved from a comparison in revelation of calcium along with shadow in the proposed method and virtual histology images. Also, area differences of \(5.83 \pm 3.3\) and \(5.65 \pm 2.83\) are obtained, respectively, for ring-down and shadow domain when compared to measures performed manually by a clinical expert.  相似文献   
17.

Wireless body area networks (WBANs) are deal with wireless networks in the human body. We describe the performance analysis of dual-hop cooperative relaying systems employing amplify-and-forward (AF) technique in WBANs over independent and nonnecessary identically distributed Gamma fading channels. More specifically, we present closed-form derivations of the outage probabilities (OP), symbol error probabilities (SEP) and ergodic capacity (EC) for fixed gain and channel state information (CSI)-assisted relaying techniques at arbitrary signal-to-noise-ratios (SNRs). We also deduce novel expressions in the high SNR region. By doing so, we can quantify the performance of system by the diversity and coding gains. Using the derived expressions as a starting point and for the case of Exponential fading, we consider three practical optimization scenarios. They are optimal relay position with fixed power allocation, power allocation under the fixed location of the relay and joint optimization of power allocation and relay position under a transmit power constraint. The Monte Carlo simulations are used to validate the accuracy of our derivations, where it is demonstrated that the proposed adaptive allocation method significantly outperforms the fixed allocation method.

  相似文献   
18.
Coronary artery calcification (CAC) is quantified based on a computed tomography (CT) scan image. A calcified region is identified. Modified expectation maximization (MEM) of a statistical model for the calcified and background material is used to estimate the partial calcium content of the voxels. The algorithm limits the region over which MEM is performed. By using MEM, the statistical properties of the model are iteratively updated based on the calculated resultant calcium distribution from the previous iteration. The estimated statistical properties are used to generate a map of the partial calcium content in the calcified region. The volume of calcium in the calcified region is determined based on the map. The experimental results on a cardiac phantom, scanned 90 times using 15 different protocols, demonstrate that the proposed method is less sensitive to partial volume effect and noise, with average error of 9.5% (standard deviation (SD) of 5-7mm(3)) compared with 67% (SD of 3-20mm(3)) for conventional techniques. The high reproducibility of the proposed method for 35 patients, scanned twice using the same protocol at a minimum interval of 10 min, shows that the method provides 2-3 times lower interscan variation than conventional techniques.  相似文献   
19.
Media‐centric networks deal with exchanging large media files between geographical distributed locations with strict deadlines. In such networks, resources need to be available at predetermined timeslots in the future and thus need to be reserved in advance, based on either flexible or fixed timeslot sizes. Reliability of the transfers is also important and can be attained by advance provisioning of redundant reservations. This, however, imposes additional costs, because redundant reservations are rarely in use, causing network resources to be wasted. Further adaptation and network utilization can be achieved at runtime by reutilizing unused reservations for transferring extra data as long as no failure has been detected. In this article, we design, implement, and evaluate a resilient advance bandwidth‐reservation approach based on flexible timeslots, in combination with a runtime adaptation approach. We take into account the specific characteristics of media transfers. Quality and complexity of the proposed approach have been extensively compared with that of a fixed timeslot algorithm. Our simulation results reveal that the highest admittance ratio and percentage of fully transferred requests in case of failures are almost always achieved by flexible timeslots, while the execution time of this approach is up to 17.5 times lower, compared with the approaches with fixed timeslot sizes.  相似文献   
20.
Journal of Signal Processing Systems - This paper presents an algorithm-adaptable, scalable, and platform-portable generator for massive multiple-input multiple-output (MIMO) baseband processing...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号