首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   36篇
  国内免费   2篇
电工技术   3篇
化学工业   77篇
金属工艺   15篇
机械仪表   21篇
建筑科学   3篇
能源动力   28篇
轻工业   49篇
水利工程   7篇
石油天然气   1篇
无线电   59篇
一般工业技术   94篇
冶金工业   9篇
原子能技术   3篇
自动化技术   108篇
  2024年   5篇
  2023年   5篇
  2022年   19篇
  2021年   19篇
  2020年   23篇
  2019年   25篇
  2018年   39篇
  2017年   24篇
  2016年   26篇
  2015年   12篇
  2014年   24篇
  2013年   44篇
  2012年   15篇
  2011年   21篇
  2010年   17篇
  2009年   27篇
  2008年   19篇
  2007年   16篇
  2006年   12篇
  2005年   11篇
  2004年   6篇
  2003年   8篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1979年   1篇
  1974年   1篇
  1973年   2篇
  1970年   3篇
  1956年   1篇
排序方式: 共有477条查询结果,搜索用时 0 毫秒
471.
472.
A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria (Gram-positive and Gram-negative) and their spores include a variety of U(IV) species other than uraninite. U(IV) products were prepared in chemically variable media and characterized using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) to elucidate the factors favoring/inhibiting uraninite formation and to constrain molecular structure/composition of the non-uraninite reduction products. Molecular complexes of U(IV) were found to be bound to biomass, most likely through P-containing ligands. Minor U(IV)-orthophosphates such as ningyoite [CaU(PO(4))(2)], U(2)O(PO(4))(2), and U(2)(PO(4))(P(3)O(10)) were observed in addition to uraninite. Although factors controlling the predominance of these species are complex, the presence of various solutes was found to generally inhibit uraninite formation. These results suggest a new paradigm for U(IV) in the subsurface, i.e., that non-uraninite U(IV) products may be found more commonly than anticipated. These findings are relevant for bioremediation strategies and underscore the need for characterizing the stability of non-uraninite U(IV) species in natural settings.  相似文献   
473.
Applied Composite Materials - This work presents the influence of functionalised graphene nanoplatelets (f-GnPs) and functionalised glass fibers (f-fiber) on the tensile strength and the fracture...  相似文献   
474.
Topics in Catalysis - In this work, Mn3O4 nanoparticles (NPs) were synthesized by hydrothermal method using the precursor manganese acetate and polyvinyl alcohol (PVA) as...  相似文献   
475.
Clean Technologies and Environmental Policy - Heavy metal (HM) contamination is a persisting environmental problem in many countries. The major sources of soil contamination due to heavy metals...  相似文献   
476.
The novelty of this research work deals with green synthesized nanoadditives (5% of graphene, carbon nanotubes, and carbon black), oxygenated additives (5% of n-butanol, n-heptane, and n-pentanol), and then the test fuels are prepared by blending of 20% of soybean biodiesel and 70%, 80%, and 100% of premium diesel. The experimental outcomes revealed that the Nickel Chromium Aluminum (NiCrAl-120 micron), partially stabilized zirconia, and titanium dioxide ceramic composites at about 400 microns achieve the thermal barrier coat of low heat rejection (LHR) engine parts by the air-plasma spray method. Compared with Blend B, green synthesized carbon black (5%), premium diesel (70%), and n-pentanol (5%) mixed soybean biodiesel (20%) fuel (Blend E) tested on the LHR engine achieved 4.90% higher brake thermal efficiency and 25.31% lower brake-specific fuel consumption at peak load owing to the presence of an oxygenated agent (n-pentanol) in the fuel blend, which minimizes carbon deposition. The carbon monoxide, hydrocarbon, NOx, and smoke emissions were reduced by 25.58%, 29.41%, 5.06%, and 7.75% when compared to Blend B at peak load. Then, the in-cylinder pressure and heat release rate were found to be 4.52% and 8.87% higher for Blend E at peak load compared to Blend B. This was because the mix of oxygenated additive and carbon black bio-based nanofuels made the combustion process go faster. These fuel blends were tested on LHR diesel engines at various load conditions.  相似文献   
477.
Neural Computing and Applications - The security of multimedia information is a prime concern in the present digital world. As a remedy, a robust color image watermarking in the transform domain...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号