首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
化学工业   4篇
轻工业   7篇
无线电   27篇
冶金工业   1篇
自动化技术   1篇
  2022年   1篇
  2017年   1篇
  2012年   1篇
  2011年   5篇
  2005年   2篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
21.
We propose a control architecture for implementing a dynamic channel assignment (DCA) algorithm which optimizes two-way channel quality in a TDMA portable radio system. Computer simulations are used to evaluate the performance of this DCA method. A common control frequency, which is frame-synchronized among base stations, provides (1) beacons for portables to locate base stations and obtain DCA information, (2) broadcast channels for system and alerting information, and (3) pilot signals to permit portables to evaluate downlink interference. This allows low-complexity radio ports and portables to mutually select channels to avoid interference and avoid creating excessive interference. Results from computer simulations demonstrate the good spectrum efficiency of this method and its potential for handling nonuniform traffic demand. This work is targeted toward understanding the implications to local exchange networks of wireless system alternatives that could provide access to those networks.A preliminary work with the same title was presented at the Second International Conference on Universal Personal Communications, October 12–15, 1993, Ottawa, Canada.  相似文献   
22.
The public's desire for mobile communications and computing, as evidenced by the popularity of cellular phones and laptop computers combined with the explosive demand for Internet access suggest a very promising future for wireless data services. The key to realizing this potential is the development and deployment of high-performance radio systems. In this article we describe a basic service concept, advanced cellular Internet service (ACIS), and the technologies for achieving reliable high-speed transmission to wide-area mobile and portable cellular subscribers with very high spectrum efficiency. Such a wireless service, optimized to meet the needs of a client-server model for information retrieval and Web browsing, and combined with evolutionary enhancements in second-generation technologies, can provide an attractive option for third-generation systems. The radio link design combines OFDM with transmit and receive antenna diversity and Reed-Solomon coding to overcome the link budget and dispersive fading limitations of the cellular mobile radio environment. For access, a dynamic packet assignment algorithm is proposed which combines rapid interference measurements, priority ordering, and a staggered frame assignment schedule to provide spectrum efficiencies of two-to-four times existing approaches  相似文献   
23.
Orthogonal frequency-division multiplexing (OFDM) is an attractive technique for achieving high-bit-rate wireless data transmission. However, the potentially large peak-to-average power ratio (PAP) has limited its application. Recently, two promising techniques for improving the PAP statistics of an OFDM signal have been proposed: the selective mapping and partial transmit sequence approaches. Here, we present suboptimal strategies for combining partial transmit sequences that achieve similar performance but with reduced complexity  相似文献   
24.
The rapid growth of wireless voice subscribers, the growth of the Internet, and the increasing use of portable computing devices suggest that wireless Internet access will rise rapidly over the next few years. Rapid progress in digital and RF technology is making possible highly compact and integrated terminal devices, and the introduction of sophisticated wireless data software is making wireless Internet access more user-friendly and providing more value. Transmission rates are currently only about 10 kb/s for large cell systems. Third-generation wireless access such as WCDMA and the evolution of second-generation systems such as TDMA IS-136+, EDGE, and CDMA IS-95 will provide nominal bit rates of 50-384 kb/s in macrocellular systems. This article discusses packet data transmission rates of 2-5 Mb/s in macrocellular environments and up to 10 Mb/s in microcellular and indoor environments as a complementary service to evolving second- and third-generation wireless systems. Dynamic packet assignment for high-efficiency resource management and packet admission; OFDM at the physical layer with interference suppression, space-time coding, and frequency diversity; as well as smart antennas to obtain good power and spectral efficiency are discussed in this proposal. Flexible allocation of both large and small resources also permits provisioning of services for different delay and throughput requirements  相似文献   
25.
The success of cellular services, combined with the increased presence of laptop computers and the rapid growth in the number of Internet users, indicates that wireless data should have a very bright future. Nevertheless, today the number of wireless data subscribers is small, with the most formidable obstacle to user acceptance being the performance limitations of existing services and products. This article discusses combining enhanced data rates for CSM evolution (EDGE) with wideband orthogonal frequency-division multiplexing in an asymmetrical solution to provide high-speed data rates, with wide-area coverage and good quality, for wireless packet data services  相似文献   
26.
A combined burst synchronization and error detection scheme is studied for a time-division multiple access (TDMA) portable radio system. Analysis, computer simulation, and experimental results of the false acceptance rate of the system using the combined scheme are presented. It is found that for a (161,147) code used in this study, which is capable of correcting ±6-b sync slippage, the error detection capability of the code is degraded by 3 b on a slow Rayleigh fading channel using coherent QPSK demodulation with differential decoding. However, lower implementation complexity and higher efficiency are obtained than with separate burst synchronization and error detection processes  相似文献   
27.
For CDMA (code-division multiple-access) wireless communications systems, orthogonal signaling with noncoherent detection has been proposed when a reference phase is not available. In this paper, orthogonal signaling using Walsh signals is considered. Performance of the channel using error-correcting coding together with 1) bit-by-bit interleaving or 2) Walsh word-by-word interleaving is investigated. Simulation results show that for several types of fading and non-fading channels with practical amounts of interleaving and with practical power control, the second technique with complete soft decision decoding that has added complexity in the decoder gives significant reduction in the required signal to interference ratio (SIR) over the first technique  相似文献   
28.
We evaluate the performance of a previously proposed dynamic frequency hopping (DFH) when applied to cellular systems with a limited total bandwidth. We also illustrate a practical implementation for DFH deployment using network-assisted resource allocation (NARA). The performance evaluation is accomplished by system-level simulations of a system with 12 carriers and 1/1 frequency reuse, based on the EDGE-Compact specification. Voice-only circuit-switched operation is assumed. The fading channel, multicell interference, voice activity, and antenna sectorization are modeled. We present the performance of dynamic frequency hopping compared to random frequency hopping and fixed channel assignment by showing the distributions of the word error rates. The sensitivity to occupancy, Rayleigh fading assumptions, number of carriers, voice activity, and measurement errors are studied. We also compare the uplink and downlink performance. The results indicate that DFH can significantly improve the performance compared to random frequency hopping. For example, at a 2 % frame error rate with 90% coverage, the capacity improvement of DFH is almost 100% when compared with fixed channel assignment, and about 50% when compared to random frequency hopping. The amount of improvement for the uplink direction is smaller than the improvement for the downlink direction, especially for higher occupancies  相似文献   
29.
An elegant means by which highspeed burst wireless transmission can be accomplished with small amounts of overhead is through a novel technique referred to as clusteredOFDM (Cimini et al., 1996). By using OFDM modulation with a long symbol interval, clusteredOFDM overcomes the complex and costly equalization requirements associated with single carrier systems. Moreover, the need for highly linear power amplifiers typically required in OFDM systems is alleviated through the use of multiple transmit antennas combined with nonlinear coding. The clustering technique also leads to a natural implementation of transmit diversity. This paper reports on preliminary results on the performance of a clusteredOFDM system as well as the design and implementation of a clusteredOFDM transmitter. The prototype transmitter can deliver 7.5 Mbps, and it is expected that this data rate could be easily tripled with existing technology in a second generation system. The paper also describes the architectural tradeoffs made in order to reduce the hardware complexity of the boards as well as some experimental results showing the operation of the transmitter.  相似文献   
30.
We propose a framework for network-assisted radio resource management in wireless data networks. This type of radio resource management techniques offer implementation and capacity benefits compared to conventional, interference-measurement based, dynamic channel assignment (DCA) algorithms. The basic idea is to use interbase signaling to shift most of the burden of the resource allocation from the air interface to the backbone infrastructure. By exchanging channel assignment as well as other relevant information in real time through the backbone network, each base can calculate the impact of a resource assignment on the system. As a result, rapid interference measurements, which are typically needed to implement DCA schemes, are replaced by a limited amount of path loss measurements and the computation of interference conditions by the base stations. This significantly reduces the measurement and over-the-air signaling requirements, and can also provide an opportunity for a better optimization of the system performance. We focus on two specific algorithms: network-assisted least-interference-based dynamic packet assignment (NA-LI-DPA) and network-assisted dynamic packet assignment with throughput optimization (NA-DPA). NA-LI-DPA closely resembles a least-interference-based dynamic channel assignment algorithm, and NA-DPA attempts to further improve the overall system throughput. The algorithms, as defined, are appropriate for a best-effort data service, where the primary goal is to provide a higher throughput. However, it will be clear from the discussion that it is also feasible to alter the algorithms to optimize performance metrics other than throughput, e.g., to ensure a certain quality of service. We show through simulation that, for a system like enhanced general packet radio service (EGPRS) system, NA-DPA can provide a throughput that is 50% higher than random packet assignment, and 25% higher than that obtained by conventional DCA algorithms  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号