首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   58篇
电工技术   17篇
化学工业   214篇
金属工艺   5篇
机械仪表   27篇
建筑科学   14篇
能源动力   33篇
轻工业   165篇
水利工程   4篇
石油天然气   5篇
无线电   70篇
一般工业技术   84篇
冶金工业   73篇
原子能技术   6篇
自动化技术   93篇
  2024年   2篇
  2023年   7篇
  2022年   22篇
  2021年   47篇
  2020年   22篇
  2019年   34篇
  2018年   50篇
  2017年   38篇
  2016年   34篇
  2015年   25篇
  2014年   31篇
  2013年   62篇
  2012年   48篇
  2011年   58篇
  2010年   36篇
  2009年   29篇
  2008年   34篇
  2007年   31篇
  2006年   19篇
  2005年   11篇
  2004年   10篇
  2003年   10篇
  2002年   12篇
  2001年   17篇
  2000年   6篇
  1999年   9篇
  1998年   23篇
  1997年   20篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1990年   7篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有810条查询结果,搜索用时 15 毫秒
11.
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.  相似文献   
12.
State-of-the-art (112)B CdZnTe substrates were examined for near-surface tellurium precipitate-related defects. The Te precipitate density was observed to be fairly uniform throughout the bulk of the wafer, including the near-surface region. After a molecular beam epitaxy (MBE) preparation etch, exposed Te precipitates, small pits, and bumps on the (112)B surface of the CdZnTe wafer were observed. From near-infrared and dark field microscopy, the bumps and small pits on the CdZnTe surface are associated with strings of Te precipitates. Raised bumps are Te precipitates near the surface of the (112)B CdZnTe where the MBE preparation etch has not yet exposed the Te precipitate(s). An exposed Te precipitate sticking above the etched CdZnTe surface plane occurs when the MBE preparation etch rapidly undercuts a Te precipitate. Shallow surface pits are formed when the Te precipitate is completely undercut from the surrounding (112)B surface plane. The Te precipitate that was previously located at the center of the pit is liberated by the MBE preparation etch process.  相似文献   
13.
Unmanned vehicles have already proved invaluable in environmental field studies by providing levels of spatial–temporal sampling resolution which could have not been attained before. Recent trends show that the levels of spatial–temporal sampling resolutions attained with individual vehicles are feasible for wide areas through the operation of persistent vehicle networks. The possibility of persistent sampling over wide areas has the potential to revolutionize environmental field studies. The roles of unmanned vehicle systems in future environmental field studies are discussed in the light of the recent technological developments and trends, along with the major challenges associated to this vision. The discussion is illustrated with examples of developments from the Underwater Systems and Technologies Laboratory from Porto University, Portugal.  相似文献   
14.
The molecular epidemiology and population structure of 30 bovine subclinical mastitis field isolates of Streptococcus uberis, collected from 6 Portuguese herds (among 12 farms screened) during 2002 and 2003, were examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isolates and multilocus sequence typing (MLST) to assess the relationship between PFGE patterns and to identify genetic lineages. The 30 isolates were clustered into 18 PFGE types, using a similarity cutoff of 80%, and 3 PFGE types accounted for almost half of the isolates (46.6%). These major types were herd specific, suggesting either cow-to-cow transmission or infection with isolates from the same environmental reservoirs. The remaining unrelated PFGE types of isolates were from different herds strongly suggesting environmental sources of Strep. uberis infection. All 30 isolates were analyzed by MLST and clustered into 14 sequence types (ST). These ST were found to be novel, either with 10 new alleles of 6 housekeeping genes or with different combinations of previously assigned alleles. Five of these ST were clustered into 3 clonal complexes (lineages), ST-143, ST-86, and ST-5, known to include bovine isolates from several geographic locations (Australia, New Zealand, United Kingdom, Sweden, and Denmark) and 9 singletons. To our knowledge, this is the first report that documents molecular typing studies of bovine isolates of Strep. uberis from Portugal, which were shown to represent novel genomic backgrounds of this pathogen.  相似文献   
15.
A novel microporous two-dimensional(2D)Ni-based phosphonate metal-organic framework(MOF;denoted as IEF-13)has been successfully synthesized by a simple and green hydrothermal method and fully characterized using a combination of experimental and computational techniques.Structure resolution by single-crystal X-ray diffraction reveals that IEF-13 crystallizes in the triclinic space group Pi having bi-octahedra nickel nodes and a photo/electroactive tritopic phosphonate ligand.Remarkably,this material exhibits coordinatively unsaturated nickel(II)sites,free-P03H2and-P03H acidic groups,a C02accessible microporosity,and an exceptional thermal and chemical stability.Further,its in-deep optoelectronic characterization evidences a photoresponse suitable for photocatalysis.In this sense,the photocatalytic activity for challenging H2generation and overall water splitting in absence of any co-catalyst using UV-Vis irradiation and simulated sunlight has been evaluated,constituting the first report for a phosphonate-MOF photocatalyst.IEF-13 is able to produce up to 2,200 fimol of H2per gram using methanol as sacrificial agent,exhibiting stability,maintaining its crystal structure and allowing its recycling.Even more,170μmol of H2per gram were produced using IEF-13 as photocatalyst in the absence of any co-catalyst for the overall water splitting,being this reaction limited by the 02reduction.The present work opens new avenues for further optimization of the photocatalytic activity in this type of multifunctional materials.  相似文献   
16.
Propolis presents several health benefits due to the presence of bioactive compounds, mainly phenolic compounds; however, its application in food is limited due to undesirable odor and low water solubility. The bioactive compounds are usually susceptible to degradation by exposure to light, heat, or oxygen or by interaction with other compounds, which may limit its biological activity. The study aimed the propolis extract microencapsulation using rice, pea, soybean, and ovoalbumin proteins as wall material by spray drying and to analyze their in vitro digestion. The propolis extract presented a high concentration of apigenin. Encapsulation efficiency was greater than 70%, and it was maintained the antioxidant activity of propolis (88% inhibition of DPPH for propolis extract and >?73% for the microparticles). The DSC, ATR-FTIR, and X-ray diffraction techniques confirmed the encapsulation. The microparticles showed different shapes, sizes, and physical characteristics. The microparticles encapsulated with pea protein could be used in formulations of Minas Frescal cheese due to the controlled released, whereas the other microparticles could be used in pudding formulations.  相似文献   
17.

Today, cities face many significant challenges, and the smart city concept is a promising means to address typical traditional city problems. The wireless e-health technologies is an evolving topic in the area of telemedicine nowadays. Mobile telecommunication and the use of multimedia technologies are the core of providing better access to healthcare personnel on the move. These technologies provide equal access to medical information and expert care leading to a better and a more efficient use of resources. Mobile and Fog computing technologies can also cope with many challenges in smart healthcare resources of mobility, scalability, efficiency, and reliability. Optimal healthcare systems are particularly critical in cities, due to the highly concentrated populations. This high population increases the potential for harm and damage in the case of negligence or improper treatment. This can lead to infections and disease outbreaks, which could become epidemic situations and require containment, which is very costly. Motivated by the need for better usage and management of healthcare resources, which is crucial for reliable healthcare delivery, this paper introduces a model that can provide improved delivery and utilization of resources. The quality reward-based model was developed to study and react to the satisfaction factors of healthcare systems, and proposes an optimization-based algorithm called the Maximum Reward Algorithm (MRA), that enhances the use and delivery of healthcare resources. The algorithm has been tested with multiple experiments and simulations, and has proved that it can provide reliability, efficiency and achieves 50.1% to 77.2% performance improvement.

  相似文献   
18.
1,4-Butanediol (1,4-BDO) is a four-carbon diol used for industrial applications such as organic solvents, and the production of adhesives, fibers and polyurethanes. 1,4-BDO currently is produced through several petrochemical routes: hydrogenation of maleic anhydride, isomerization of propylene oxide, acetoxylation of butadiene, and the reaction between formaldehyde and acetylene. The current trends in 1,4-BDO production involve the utilization of renewable sources such as biomass. In this context, the present study aimed to identify promising technologies of 1,4-BDO production through prospecting methodology based on the analyses of patents and scientific article, describing the most relevant aspects of those emerging technologies. An increasing amount of 1,4-BDO production focused on biotechnological routes has been reported, with the US heavily involved in the development of new technologies. This study tracked three promising technologies which have potential for application in a biorefinery context because those processes involve (i) production of 1,4-BDO from sugars, classified herein as the biotechnological route; (ii) production of intermediates from sugar fermentation followed by catalytic conversion into 1,4-BDO, classified herein as the hybrid route, and (iii) furan/furfural conversion into 1,4-BDO. © 2020 Society of Chemical Industry  相似文献   
19.
Genes encoding the dihydrolipoyl acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase (PDH) multienzyme complex from Bacillus stearothermophilus were overexpressed in Escherichia coli. The E2 component was purified as a large soluble aggregate (molecular mass > 1 x 10(6) Da) with the characteristic 532 symmetry of an icosahedral (60-mer) structure, and the E3 as a homodimer with a molecular mass of 110 kDa. The recombinant E2 component in vitro was capable of binding either 60 E3(alpha2) dimers or 60 heterotetramers (alpha2beta2) of the pyruvate decarboxylase (E1) component (also the product of B. stearothermophilus genes overexpressed in E. coli). Assembling the E2 polypeptide chain into the icosahedral E2 core did not impose any restriction on the binding of E1 or E3 to the peripheral subunit-binding domain in each E2 chain. This has important consequences for the stoichiometry of the assembled complex in vivo. The lipoyl domain of the recombinant E2 protein was found to be unlipoylated, but it could be correctly post-translationally modified in vitro using a recombinant lipoate protein ligase from E. coli. The lipoylated E2 component was able to bind recombinant E1 and E3 components in vitro to generate a PDH complex with a catalytic activity comparable with that of the wild-type enzyme. Reversible unfolding of the recombinant E2 and E3 components in 6 M guanidine hydrochloride was possible in the absence of chaperonins, with recoveries of enzymic activities of 95% and 85%, respectively. However, only 26% of the E1 enzyme activity was recovered under the same conditions as a result of irreversible denaturation of both E1alpha and E1beta. This represents the first complete post-translational modification and assembly of a fully active PDH complex from recombinant proteins in vitro.  相似文献   
20.
In mammals, catechol-O-methyltransferase (COMT) is distributed throughout various organs, the highest activities being found in the liver and kidney. However, comparisons of the kinetic parameters are difficult to perform, since the experimental procedures in the enzyme assay vary quite considerably. The present work was aimed at studying the optimal liver COMT assay conditions for determining the kinetics of the enzyme. The COMT assay was performed with liver homogenates from 60 days old male Wistar rats with adrenaline (AD) as the substrate. Time course experiments using 100 microM S-adenosyl-L-methionine (SAMe) and 300 microM AD showed linearity of O-methylation reaction upto 10 min. Using 100 microM SAMe, Vmax (nmol mg protein-1 h-1) and Km (microM) values progressively decreased respectively from 22.1 and 104.8 at 5 min down to 5.8 and 24.62 at 60 min incubation periods. This decrease was not due to end-product inhibition. Using 2500 microM AD, Km values (microM) for the methyl donor SAMe increased progressively from 174 at 5 min upto 1192.5 at 60 min; upto 30 min of incubation Vmax values did not change. When a 5 min incubation period and 500 microM SAMe were used, Vmax and Km values for liver COMT were 63.4 nmol mg protein-1 h-1 and 261.1 microM, respectively. It is concluded that an incubation period of 5 min and a SAMe concentration of 500 microM provide optimal conditions for the liver homogenate COMT assay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号