A generalized mapping strategy that uses a combination of graph theory, mathematical programming, and heuristics is proposed. The authors use the knowledge from the given algorithm and the architecture to guide the mapping. The approach begins with a graphical representation of the parallel algorithm (problem graph) and the parallel computer (host graph). Using these representations, the authors generate a new graphical representation (extended host graph) on which the problem graph is mapped. An accurate characterization of the communication overhead is used in the objective functions to evaluate the optimality of the mapping. An efficient mapping scheme is developed which uses two levels of optimization procedures. The objective functions include minimizing the communication overhead and minimizing the total execution time which includes both computation and communication times. The mapping scheme is tested by simulation and further confirmed by mapping a real world application onto actual distributed environments 相似文献
Microsystem Technologies - High isolation and low insertion loss are the key design parameters for the NEMS switch at high frequency. The comprehensive study of radio frequency (RF) performance... 相似文献
Multimedia Tools and Applications - Automated bank cheque verification using image processing is an attempt to complement the present cheque truncation system, as well as to provide an alternate... 相似文献
Image captured by low dynamic range (LDR) camera fails to capture entire exposure level of scene, and instead only covers certain range of exposures. In order to cover entire exposure level in single image, bracketed exposure LDR images are combined. The range of exposures in different images results in information loss in certain regions. These regions need to be addressed and based on this motive a novel methodology of layer based fusion is proposed to generate high dynamic range image. High and low-frequency layers are formed by dividing each image based on pixel intensity variations. The regions are identified based on information loss section created in differently exposed images. High-frequency layers are combined using region based fusion with Dense SIFT which is used as activity level testing measure. Low-frequency layers are combined using weighted sum. Finally combined high and low-frequency layers are merged together on pixel to pixel basis to synthesize fused image. Objective analysis is performed to compare the quality of proposed method with state-of-the-art. The measures indicate superiority of the proposed method.
Neural Computing and Applications - This study presents a novel implementation of evolutionary heuristics through backtracking search optimization algorithm (BSA) for accurate, efficient and robust... 相似文献
This paper describes a SAS macro for the statistical analyses of cell survival data obtained after radiation treatment using the methods of R.E. Tarone et al. (Mutation Research 111 (1983) 79-96). These analyses are usually required on a routine basis by all biomedical research laboratories involved in cell survival assays generating dose-response curves aimed at characterizing radiosensitive mutant cell strains or individuals whose body cells exhibit enhanced sensitivity to radiation and other genotoxic agents. Statistical methods of linear regression are applied to data from repeated experiments with a cell line/strain and weighted estimates of a common slope and its variance are obtained. The methods are currently implemented in two APL programs. These programs are not easily accessible to most biomedical statisticians and researchers because APL is not a common software tool for statistical analysis. Implementation of these methods in SAS, a widely used commercial software for statistical analysis, is expected to help resolve this issue. We illustrate the application of the macro using an example data set obtained in our laboratory, and hope that other investigators may find it useful in analyzing their data. 相似文献
This paper presents the design of a frequency-tunable substrate-integrated waveguide (SIW) band-reject filter, specifically for spectrum underlay cognitive radio operation. The proposed filter has a simple tuning circuit but provides a wide frequency tuning range from 2.9 to 4.4 GHz (41%). The second resonant mode has been suppressed using a simple quadrature coupling; hence, the fundamental mode bandwidth of the filter has been increased from 2.08 GHz to 3.36 GHz. Due to its wide tuning range, simple tuning circuit, and increased fundamental mode bandwidth, the proposed filter is greatly important in underlay cognitive radio construction. The second-order filter has also been developed, and its performance is analyzed with both simulation and measurement. It gives a tunable bandwidth of 41%, an insertion loss of more than 10 dB, and a fundamental mode bandwidth of 3.36 GHz. The filter performance is also analyzed after connecting it to the standard horn antenna. Finally, from the total efficiency plots, it has been concluded that the proposed filter achieves all the above advantages with a low-lossy nature. 相似文献
Nanomaterials (NMs) have abundant applications in areas such as electronics, energy, environment industries, biosensors, nano devices, theranostic platforms, etc. Nanoparticles can increase the solubility and stability of drug‐loaded materials, enhance their internalisation, protect them from initial destruction in the biological system, and lengthen their circulation time. The biological interaction of proteins present in the body fluid with NMs can change the activity and natural surface properties of NMs. The size and charge of NMs, properties of the coated and uncoated NMs, nature of proteins, cellular interactions direct their internalisation pathway in the cellular system. Thus, the present review emphasises the impact of coated, uncoated NMs, size and charge, nature of proteins on nano–bio surface interactions and on internalisation with specific focus on cancer cells. The increased activity of NPs may also result in toxicity on health and environment, thus emphasis should be given to assess the toxicity of NMs in the medical field. The e‐data sharing portals of NMs have also been discussed in this review that will be helpful in providing the information about the chemical, physical, biological properties and toxicity of NMs. 相似文献
FeFET architectures for non-volatile on-chip memory are designed and compared in this investigation study. Because of its inherent non-volatile properties and low power requirements, FeFETs are attracting a lot of interest as prospective candidates for future memory technology. The aim of this paper is to investigate several FeFET designs and assess how well they function in terms of important factors including durability, retention, speed, and endurance. Using device simulations and experimental data, a number of FeFET architectures, such as MFS, MFIS, MFMIS, and MF-ABO3, are analyzed and contrasted. Comparative study gives light on the advantages and disadvantages of various FeFET architectures; improving our comprehension of how well-suited they are for non-volatile on-chip memory. This work will contribute to the improvement of FeFET devices for upcoming integrated circuits and progress the development of sophisticated FeFET-based memory techniques. 相似文献