首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   1篇
化学工业   21篇
金属工艺   5篇
机械仪表   1篇
建筑科学   3篇
能源动力   18篇
轻工业   19篇
无线电   1篇
一般工业技术   22篇
冶金工业   12篇
原子能技术   1篇
自动化技术   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   14篇
  2008年   11篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1973年   1篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
41.
The effect of grain size of magnesia and its content as well as spark plasma sintering conditions on the density, grain size, strength, hardness, and toughness of alumina was investigated. Spark plasma sintering conditions were optimized at 1150°C/5 min/175°C/min. Addition of 100 nm magnesia gave higher density levels (99.5%), while better strength (600 MPa), hardness (25 GPa), and fracture toughness (4.5 MPa·m1/2) were obtained with 15 nm magnesia. The good strength and hardness is attributed to the submicrometer grain size of the matrix, and the improved toughness to the presence of Mg-rich nanoparticles and nanopores at grain boundaries.  相似文献   
42.
Magnetic properties and microstructure were investigated in Sm17.24Co66.20Cu8.28Fe8.28 ribbons melt-spun at different wheel speeds of 5, 15, 30, 40 and 50 m/s. X-ray diffraction studies revealed that the ribbons melt-spun at lower wheel speed (<15 m/s) were comprised of three phases viz. SmCo7, Sm2Co7 and SmCo5, while higher wheel speed ribbons exhibited single phase SmCo5. The coercivity was found to increase with increase of the wheel speed. A high coercivity of 33 kOe was obtained in ribbon prepared at 50 m/s.  相似文献   
43.
In recent years, much research has been carried out to find suitable alternative fuel to petroleum products. The use of renewable fuels like ethanol, biogas and biodiesel in diesel engines is significant in this context. The properties of biodiesel depend on the type of the vegetable oil used for the trans-esterification process. Experimental analysis of the engine with various biodiesel and its blends requires much effort and time. Hence, a theoretical model is developed to analyze the performance characteristics of the compression ignition engine fueled by biodiesel and its blends. In the present investigation, biodiesel is produced using unrefined rubber seed oil. A two-step trans-esterification process (i.e. acid–alkaline trans-esterification) is developed for the production of methyl-esters of rubber seed oil. The properties of this biodiesel are closely matched with those of diesel fuel. The performance tests are carried out on a C.I. engine using biodiesel and its blends with diesel (B20 and B100) as fuel. The effects of relative air-fuel ratio and compression ratio on the engine performance for different fuels are also analyzed using this model. The comparison of theoretical and experimental results are presented.  相似文献   
44.
Pulsed laser deposition (PLD) has been used to deposit hydroxyapatite (HA) ceramic over titanium substrate with an interlayer of titania. PLD has been identified as a potential candidate for bioceramic coatings over metallic substrates to be used as orthopedic and dental implants because of better process control and preservation of phase identity of the coating component. However, direct deposition of hydroxyapatite on titanium at elevated temperature results in the formation of natural oxide layer along with some perovskites like calcium titanate at the interface. This leads to easy debonding of ceramic layer from the metal and thereby affecting the adhesion strength. In the present study, adherent and stable HA coating over Ti6Al4V was achieved with the help of an interlayer of titania. The interlayer was made to a submicron level and HA was deposited consecutively to a thickness of around one micron by exposing to laser ablation at a substrate temperature of 400°C. The deposited phase was identified to be phase pure HA by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma spectrometry. The mechanical behavior of coating evaluated by scratch test indicates that the adhesion strength of HA coating was improved with the presence of titania interlayer.  相似文献   
45.
The effect of grain boundary (GB) segregation on intergranular stress corrosion cracking (IGSCC) in hot water environments at 150°C and 250°C was studied in a P-doped AISI type 304L stainless steel. The extent of segregation was measured by an exposure test in boiling 5 N HNO3 + 8g/L K2Cr2O7 solution as well as by a potentiostatic etch test at +1325 mV (SHE) in 5 N H2SO4 solution. Although GB segregation was detected in all the aged specimens, IGSCC was shown by only the specimens aged for 550°C/1000 h. The results suggest that it is the GB chromium depletion, rather than the segregation of phosphorus at the GBs, that controls IGSCC of stainless steels in the hot water environments studied.  相似文献   
46.
Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.  相似文献   
47.
The characteristics of hot deformation of INCONEL alloy MA 754 have been studied using processing maps obtained on the basis of flow stress data generated in compression in the temperature range 700 °C to 1150 °C and strain rate range 0.001 to 100 s-1. The map exhibited three domains. (1) A domain of dynamic recovery occurs in the temperature range 800 °C to 1075 °C and strain rate range 0.02 to 2 s-1, with a peak efficiency of 18 pct occurring at 950 °C and 0.1 s-1. Transmission electron microscope (TEM) micrographs revealed stable subgrain structure in this domain with the subgrain size increasing exponentially with an increase in temperature. (2) A domain exhibiting grain boundary cracking occurs at temperatures lower than 800 °C and strain rates lower than 0.01 s-1. (3) A domain exhibiting intense grain boundary cavitation occurs at temperatures higher than 1075 °C. The material did not exhibit a dynamic recrystallization (DRX) domain, unlike other superalloys. At strain rates higher than about 1 s-1 the material exhibits flow instabilities manifesting as kinking of the elongated grains and adiabatic shear bands. The material may be safely worked in the domain of dynamic recovery but can only be statically recrystallized.  相似文献   
48.
The evaluation of the tempering response of an ultra-high-strength, high-toughness (UHSHT) steel revealed that samples austenitized at 900 °C and tempered for 4 and 8 hours at 485 °C had similar yield strengths but a ∼50 pct increase in fracture toughness for the 8-hour temper. The results of our investigations of microstructural origins of this difference, using the nanometric scale resolution of the three-dimensional atom probe (3DAP) suggest that nanoscale strengthening precipitates, essentially carbides and intermetallic clusters (containing primarily Cr and Mo atoms), are present in both samples. The chemical compositions of the particles in the two samples were found to be similar, but clear evidence of differences in physical attributes of the precipitates, such as particle size, morphology, and interparticle spacing, are seen. This article is based on a presentation given in the symposium entitled “Materials Behavior: Far from Equilibrium” as part of the Golden Jubilee Celebration of Bhabha Atomic Research Centre, which occurred December 15–16, 2006 in Mumbai, India.
K. Muraleedharan (Scientist)Email:
  相似文献   
49.
The ageing behavior due to the effects of heat, ozone, γ‐ radiation, and water on ethylene propylene diene monomer rubber/styrene butadiene rubber (EPDM/SBR) blends was studied. The tensile strength, crack initiation, ozone ageing, gamma radiation, and water resistance of the blends were measured and used to determine the extent of ageing. Tensile strength of blends of different compositions increased after thermal ageing for 96 h at 100°C probably due to the continued cross‐linking. It has been observed that an increase in EPDM in the blends improves the ozone resistance of the blends. Crack initiation was noted only in blends with lesser amount of EPDM and the cracks in such blends were found deeper, wider and continuous. With 15 kGy irradiation dose, the tensile strength of the blends found to be decreased while it increased with 80 kGy dosage of γ‐radiation. The elongation at break showed a decreasing trend with increased dosage of γ‐radiation. It has also been observed that the EPDM rich blends showed negligible water uptake. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
50.
Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model is developed using MATLAB software for gasification process simulation based on extensive data obtained from experimental investigations. Experimental investigations on air gasification are conducted in a bubbling fluidised bed gasifier with different locally available biomasses at various operating conditions to obtain the producer gas. The developed artificial neural network consists of seven input variables, output layer with four output variables and one hidden layer with fifteen neurons. The multi-layer feed-forward neural network is trained employing Levenberg–Marquardt back-propagation algorithm. Performance of the model appraised using mean squared error and regression analysis shows good agreement between the output and target values with a regression coefficient, R = 0.987 and mean squared error, MSE = 0.71. The developed model is implemented to predict the producer gas composition from selected biomasses within the operating range. This model satisfactorily predicted the effect of operating parameters on producer gas yield, and is thus a useful tool for the simulation and performance assessment of the gasification system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号