首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   18篇
  国内免费   2篇
电工技术   8篇
综合类   1篇
化学工业   208篇
金属工艺   6篇
机械仪表   21篇
建筑科学   21篇
能源动力   35篇
轻工业   26篇
水利工程   1篇
石油天然气   2篇
无线电   33篇
一般工业技术   165篇
冶金工业   47篇
原子能技术   3篇
自动化技术   74篇
  2024年   5篇
  2023年   11篇
  2022年   35篇
  2021年   38篇
  2020年   19篇
  2019年   27篇
  2018年   31篇
  2017年   22篇
  2016年   24篇
  2015年   12篇
  2014年   31篇
  2013年   26篇
  2012年   39篇
  2011年   57篇
  2010年   27篇
  2009年   31篇
  2008年   27篇
  2007年   22篇
  2006年   24篇
  2005年   8篇
  2004年   22篇
  2003年   14篇
  2002年   16篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1992年   6篇
  1991年   4篇
  1986年   4篇
  1983年   2篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1963年   2篇
  1960年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有651条查询结果,搜索用时 31 毫秒
31.
The chlorine and oxygen overpotential in dependence on the current density i (A cm?2) and on the temperature in the range of 15–75°C was measured at γ-MnO2 and β-PbO2 electrodes in concentrated water solutions of sodium chloride and perchlorate. From the measured values the experimental activation energy in dependence on overpotential was calculated and, for the temperature of 25°C, the constants of Tafel's equation (a,b) (α, io respectively) were evaluated.  相似文献   
32.
We have designed small focused combinatorial library of hexapeptide inhibitors of NS3 serine protease of the hepatitis C virus (HCV) by structure-based molecular design complemented by combinatorial optimisation of the individual residues. Rational residue substitutions were guided by the structure and properties of the binding pockets of the enzyme's active site. The inhibitors were derived from peptides known to inhibit the NS3 serine protease by using unusual amino acids and alpha-ketocysteine or difluoroaminobutyric acid, which are known to bind to the S1 pocket of the catalytic site. Inhibition constants (Ki) of the designed library of inhibitors were predicted from a QSAR model that correlated experimental Ki of known peptidic inhibitors of NS3 with the enthalpies of enzyme-inhibitor interaction computed via molecular mechanics and the solvent effect contribution to the binding affinity derived from the continuum model of solvation. The library of the optimised inhibitors contains promising drug candidates-water-soluble anionic hexapeptides with predicted Ki* in the picomolar range.  相似文献   
33.
A computationally efficient algorithm for electromagnetic (EM)‐simulation‐driven design optimization of microwave structures is proposed. Our technique exploits variable‐fidelity EM simulations and the multilevel design approach where an approximate optimum of the lower accuracy but faster EM model of the structure under design is used as a starting point for optimizing a more accurate model. Several enhancements of the basic multifidelity method are introduced, including an efficient algorithm of optimizing EM models that is based on local response surface approximations, as well as automated adjustment of model fidelity. Convergence of the procedure to the optimum design is ensured by defaulting to the higher fidelity model whenever the prediction given by the lower fidelity fails to improve the design. Distribution of the computational effort between the models of different fidelity allows for making larger steps in the design space at a low cost, as well as substantial reduction of the number of high‐fidelity model evaluations, because the high‐fidelity model is only referred to in the last design stage. The article provides comprehensive numerical verification of our technique. Substantial computational savings are demonstrated in comparison to the benchmark methods: over 40% on average as compared to a basic version of the multifidelity optimization approach and over 95% as compared to direct optimization of the high‐fidelity model. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:281–288, 2014.  相似文献   
34.
Quantum chemical methods have been used to identify reaction pathways of the thermal decomposition of bisphenol C polycarbonate, one of the most fire-resistant polymers known to the scientific community. Despite substantial interest in its unusual high-temperature behavior, the mechanism of its thermal decomposition has been unknown. On the basis of computational results, a mechanism is proposed where the main feature is a shift of Cl atom from the β-styrene position to the adjacent aromatic ring, which leads to crosslinking and cyclization of the polymer. The proposed mechanism is consistent with experimental observations of char, HCl, and CO2 as the main pyrolysis products.  相似文献   
35.
Phase pure sample of the microporous copper silicate CuSH–1Na has been obtained by simplified hydrothermal method without using additives (H2O2 and Na2HPO4). Ion exchange of Na+ by Cs+, Ca2+ and Sr2+ ions showed that the structure can suffer partial replacement of the charge compensating cations. Ion exchange with Cs+ resulted in distinct dehydration while the ion exchange with Sr2+ increased the total amount of water. Water content in the Ca-exchanged sample is comparable to the as-synthesized sodium phase. Raman spectroscopy revealed that the divalent cations as Ca2+ and Sr2+ induce stronger local structural deformations than the monovalent Cs+. These structural changes have been also followed by the refined lattice distortions. Magnetic analyses showed that CuSH–1Na presents a very weak ferromagnetic interaction along the Cu2+ chains with a nearly vanishing Curie–Weiss temperature. This magnetic coupling is associated with super-super-exchange interactions through Cu–Na–O–Na–Cu paths. Antiferromagnetic coupling, attributed to inter-chains super-super-exchange interactions, competes with the ferromagnetic one and prevails at the lowest temperature.  相似文献   
36.
We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.  相似文献   
37.
Self-assembly is a process in which small building blocks interact autonomously to form larger structures. A recently studied model of self-assembly is the Accretive Graph Assembly Model whereby an edge-weighted graph is assembled one vertex at a time starting from a designated seed vertex. The weight of an edge specifies the magnitude of attraction (positive weight) or repulsion (negative weight) between adjacent vertices. It is feasible to add a vertex to the assembly if the total attraction minus repulsion of the already built neighbors exceeds a certain threshold, called the assembly temperature. This model naturally generalizes the extensively studied Tile Assembly Model. A natural question in graph self-assembly is to determine whether or not there exists a sequence of feasible vertex additions to realize the entire graph. However, even when it is feasible to realize the assembly, not much can be inferred about its likelihood of realization in practice due to the uncontrolled nature of the self-assembly process. Motivated by this, we introduce the robust self-assembly problem where the goal is to determine if every possible sequence of feasible vertex additions leads to the completion of the assembly. We show that the robust self-assembly problem is co-NP-complete even on planar graphs with two distinct edge weights. We then examine the tractability of the robust self-assembly problem on a natural subclass of planar graphs, namely grid graphs. We identify structural conditions that determine whether or not a grid graph can be robustly self-assembled, and give poly-time algorithms to determine this for several interesting cases of the problem. Finally, we also show that the problem of counting the number of feasible orderings that lead to the completion of an assembly is #P-complete.  相似文献   
38.
Submodular constraints play an important role both in theory and practice of valued constraint satisfaction problems (VCSPs). It has previously been shown, using results from the theory of combinatorial optimisation, that instances of VCSPs with submodular constraints can be minimised in polynomial time. However, the general algorithm is of order O(n 6) and hence rather impractical. In this paper, by using results from the theory of pseudo-Boolean optimisation, we identify several broad classes of submodular constraints over a Boolean domain which are expressible using binary submodular constraints, and hence can be minimised in cubic time. Furthermore, we describe how our results translate to certain optimisation problems arising in computer vision.  相似文献   
39.
This paper presents the use of place/transition petri nets (PNs) for the recognition and evaluation of complex multi-agent activities. The PNs were built automatically from the activity templates that are routinely used by experts to encode domain-specific knowledge. The PNs were built in such a way that they encoded the complex temporal relations between the individual activity actions. We extended the original PN formalism to handle the propagation of evidence using net tokens. The evaluation of the spatial and temporal properties of the actions was carried out using trajectory-based action detectors and probabilistic models of the action durations. The presented approach was evaluated using several examples of real basketball activities. The obtained experimental results suggest that this approach can be used to determine the type of activity that a team has performed as well as the stage at which the activity ended.  相似文献   
40.
One of the important tasks in Mechanical Engineering is to increase the safety of the vehicle and decrease its production costs. This task is typically solved by means of Multiobjective Optimization, which formulates the problem as a mapping from the space of design variables to the space of target criteria and tries to find an optimal region in these multidimensional spaces. Due to high computational costs of numerical simulations, the sampling of this mapping is usually very sparse and scattered. Combining design of experiments methods, metamodeling, new interpolation schemes and innovative graphics methods, we enable the user to interact with simulation parameters, optimization criteria, and come to a new interpolated crash result within seconds. We denote this approach as Simulated Reality, a new concept for the interplay between simulation, optimization and interactive visualization. In this paper we show the application of Simulated Reality for solution of real life car design optimization problems.
Lialia NikitinaEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号