首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5822篇
  免费   321篇
  国内免费   6篇
电工技术   76篇
综合类   13篇
化学工业   1494篇
金属工艺   138篇
机械仪表   115篇
建筑科学   402篇
矿业工程   29篇
能源动力   146篇
轻工业   451篇
水利工程   50篇
石油天然气   8篇
无线电   451篇
一般工业技术   1234篇
冶金工业   247篇
原子能技术   37篇
自动化技术   1258篇
  2024年   11篇
  2023年   102篇
  2022年   140篇
  2021年   230篇
  2020年   150篇
  2019年   128篇
  2018年   190篇
  2017年   165篇
  2016年   248篇
  2015年   242篇
  2014年   301篇
  2013年   400篇
  2012年   379篇
  2011年   462篇
  2010年   356篇
  2009年   340篇
  2008年   341篇
  2007年   317篇
  2006年   240篇
  2005年   211篇
  2004年   159篇
  2003年   150篇
  2002年   126篇
  2001年   81篇
  2000年   78篇
  1999年   67篇
  1998年   75篇
  1997年   45篇
  1996年   49篇
  1995年   57篇
  1994年   34篇
  1993年   33篇
  1992年   30篇
  1991年   20篇
  1990年   18篇
  1989年   18篇
  1988年   15篇
  1987年   13篇
  1986年   8篇
  1985年   5篇
  1984年   23篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1976年   9篇
  1975年   6篇
  1974年   5篇
排序方式: 共有6149条查询结果,搜索用时 12 毫秒
131.
132.
A facile route to soft matter self‐powered bulk heterojunction photodiode detectors sensitive to the circular polarization state of light is shown based on the intrinsic excitonic circular dichroism of the photoactive layer blend. As light detecting materials, enantiopure semiconducting small molecular squaraine derivates of opposite handedness are employed. Via Mueller matrix ellipsometry, the circular dichroism is proven to be of H‐type excitonic nature and not originating from mesoscopic structural ordering. Within the green spectral range, the photodiodes convert circular polarized light into a handedness‐dependent photocurrent with a maximum dissymmetry factor of ±0.1 corresponding to 5% overall efficiency for the polarization discrimination under short circuit conditions. On the basis of transfer matrix optical simulations, it is rationalized that the optical dissymmetry fully translates into a photocurrent dissymmetry for ease of device design. Thereby, the photodiode's ability to efficiently distinguish between left and right circularly polarized light without the use of external optical elements and voltage bias is demonstrated. This allows a straightforward and sustainable future design of flexible, lightweight, and compact integrated platforms for chiroptical imaging and sensing.  相似文献   
133.
A popular technique for nonrigid registration of medical images is based on the maximization of their mutual information, in combination with a deformation field parameterized by cubic B-splines. The coordinate mapping that relates the two images is found using an iterative optimization procedure. This work compares the performance of eight optimization methods: gradient descent (with two different step size selection algorithms), quasi-Newton, nonlinear conjugate gradient, Kiefer-Wolfowitz, simultaneous perturbation, Robbins-Monro, and evolution strategy. Special attention is paid to computation time reduction by using fewer voxels to calculate the cost function and its derivatives. The optimization methods are tested on manually deformed CT images of the heart, on follow-up CT chest scans, and on MR scans of the prostate acquired using a BFFE, T1, and T2 protocol. Registration accuracy is assessed by computing the overlap of segmented edges. Precision and convergence properties are studied by comparing deformation fields. The results show that the Robbins-Monro method is the best choice in most applications. With this approach, the computation time per iteration can be lowered approximately 500 times without affecting the rate of convergence by using a small subset of the image, randomly selected in every iteration, to compute the derivative of the mutual information. From the other methods the quasi-Newton and the nonlinear conjugate gradient method achieve a slightly higher precision, at the price of larger computation times.  相似文献   
134.
Managing the interference effects from thin (multi‐)layers allows for the control of the optical transmittance/reflectance of widely used and technologically significant structures such as antireflection coatings (ARCs) and distributed Bragg reflectors (DBRs). These rely on the destructive/constructive interference between incident, reflected, and transmitted radiation. While known for over a century and having been extremely well investigated, the emergence of printable and large‐area electronics brings a new emphasis: the development of materials capable of transferring well‐established ideas to a solution‐based production. Here, demonstrated is the solution‐fabrication of ARCs and DBRs utilizing alternating layers of commodity plastics and recently developed organic/inorganic hybrid materials comprised of poly(vinyl alcohol) (PVAl), cross‐linked with titanium oxide hydrates. Dip‐coated ARCs exhibit an 88% reduction in reflectance across the visible compared to uncoated glass, and fully solution‐coated DBRs provide a reflection of >99% across a 100 nm spectral band in the visible region. Detailed comparisons with transfermatrix methods (TMM) highlight their excellent optical quality including extremely low optical losses. Beneficially, when exposed to elevated temperatures, the hybrid material can display a notable, reproducible, and irreversible change in refractive index and film thickness while maintaining excellent optical performance allowing postdeposition tuning, e.g., for thermo‐responsive applications, including security features and product‐storage environment monitoring.  相似文献   
135.
Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC–NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self‐assembly strategy is described for fabrication of complex and well‐defined BC–NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self‐assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near‐field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.  相似文献   
136.
Cryptographic substitution boxes (S-boxes) are an integral part of modern block ciphers like the Advanced Encryption Standard (AES). There exists a rich literature devoted to the efficient implementation of cryptographic S-boxes, wherein hardware designs for FPGAs and standard cells received particular attention. In this paper we present a comprehensive study of different standard-cell implementations of the AES S-box with respect to timing (i.e. critical path), silicon area, power consumption, and combinations of these cost metrics. We examine implementations which exploit the mathematical properties of the AES S-box, constructions based on hardware look-up tables, and dedicated low-power solutions. Our results show that the timing, area, and power properties of the different S-box realizations can vary by up to almost an order of magnitude. In terms of area and area-delay product, the best choice are implementations which calculate the S-box output. On the other hand, the hardware look-up solutions are characterized by the shortest critical path. The dedicated low-power implementations do not only reduce power consumption by a large degree, but they also show good timing properties and offer the best power-delay and power-area product, respectively.  相似文献   
137.
The evolution of the grain structure through annealing of narrow damascene Cu interconnects is important for any further design of highly integrated circuits. Here we present a comprehensive transmission electron microscopy study of damascene lines between 80 nm and 3000 nm wide. Experimental results clearly indicate that morphology evolutions through annealing are strongly influenced by the line width. If the lines are wider than 250 nm a strong connection between the grain structure within the lines and the overburden copper is present at least after sufficient annealing. Once the lines are as small as 80 nm the grain structure within the lines are only weakly connected to the overburden copper grown above.  相似文献   
138.
In the field of flexible electronics, emerging applications require biocompatible and unobtrusive devices, which can withstand different modes of mechanical deformation and achieve low complexity in the fabrication process. Here, the fabrication of a mesa‐shaped elastomeric substrate, supporting thin‐film transistors (TFTs) and logic circuits (inverters), is reported. High‐relief structures are designed to minimize the strain experienced by the electronics, which are fabricated directly on the pillars' surface. In this design configuration, devices based on amorphous indium‐gallium‐zinc‐oxide can withstand different modes of deformation. Bending, stretching, and twisting experiments up to 6 mm radius, 20% uniaxial strain, and 180° global twisting, respectively, are performed to show stable electrical performance of the TFTs. Similarly, a fully integrated digital inverter is tested while stretched up to 20% elongation. As a proof of the versatility of mesa‐shaped geometry, a biocompatible and stretchable sensor for temperature mapping is also realized. Using pectin, which is a temperature‐sensitive material present in plant cells, the response of the sensor shows current modulation from 13 to 28 °C and functionality up to 15% strain. These results demonstrate the performance of highly flexible electronics for a broad variety of applications, including smart skin and health monitoring.  相似文献   
139.
The crystallization and electrical characterization of the semiconducting polymer poly(3‐hexylthiophene) (P3HT) on a single layer graphene sheet is reported. Grazing incidence X‐ray diffraction revealed that P3HT crystallizes with a mixture of face‐on and edge‐on lamellar orientations on graphene compared to mainly edge‐on on a silicon substrate. Moreover, whereas ultrathin (10 nm) P3HT films form well oriented face‐on and edge‐on lamellae, thicker (50 nm) films form a mosaic of lamellae oriented at different angles from the graphene substrate. This mosaic of crystallites with π–π stacking oriented homogeneously at various angles inside the film favors the creation of a continuous pathway of interconnected crystallites, and results in a strong enhancement in vertical charge transport and charge carrier mobility in the thicker P3HT film. These results provide a better understanding of polythiophene crystallization on graphene, and should help the design of more efficient graphene based organic devices by control of the crystallinity of the semiconducting film.  相似文献   
140.
Motivated by the possibility of modifying energy levels of a molecule without substantially changing its band gap, the impact of gradual fluorination on the optical and structural properties of zinc phthalocyanine (FnZnPc) thin films and the electronic characteristics of FnZnPc/C60 (n = 0, 4, 8, 16) bilayer cells is investigated. UV–vis measurements reveal similar Q‐ and B‐band absorption of FnZnPc thin films with n = 0, 4, 8, whereas for F16ZnPc a different absorption pattern is detected. A correlation between structure and electronic transport is deduced. For F4ZnPc/C60 cells, the enhanced long range order supports fill factors of 55% and an increase of the short circuit current density by 18%, compared to ZnPc/C60. As a parameter being sensitive to the organic/organic interface energetics, the open circuit voltage is analyzed. An enhancement of this quantity by 27% and 50% is detected for F4ZnPc‐ and F8ZnPc‐based devices, respectively, and is attributed to an increase of the quasi‐Fermi level splitting at the donor/acceptor interface. In contrast, for F16ZnPc/C60 a decrease of the open circuit voltage is observed. Complementary photoelectron spectroscopy, external quantum efficiency, and photoluminescence measurements reveal a different working principle, which is ascribed to the particular energy level alignment at the interface of the photoactive materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号