首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   59篇
电工技术   4篇
综合类   1篇
化学工业   201篇
金属工艺   5篇
机械仪表   9篇
建筑科学   23篇
能源动力   5篇
轻工业   112篇
水利工程   3篇
石油天然气   1篇
无线电   26篇
一般工业技术   103篇
冶金工业   42篇
原子能技术   1篇
自动化技术   74篇
  2023年   10篇
  2022年   31篇
  2021年   33篇
  2020年   19篇
  2019年   15篇
  2018年   17篇
  2017年   15篇
  2016年   23篇
  2015年   42篇
  2014年   38篇
  2013年   41篇
  2012年   43篇
  2011年   54篇
  2010年   30篇
  2009年   32篇
  2008年   33篇
  2007年   19篇
  2006年   25篇
  2005年   16篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有610条查询结果,搜索用时 15 毫秒
21.
Shea butter is used as an edible vegetable fat in many African countries. It can be utilized as a substitute or complete replacement for cocoa butter in various applications and plays an important role in traditional African medicinal practice. Although detection of volatile compounds by solid‐phase micro‐extraction gas‐chromatography mass‐spectroscopy (SPME‐GC‐MS) is a very reliable and reproducible technique, which can be used as an important part of authenticity checking, production monitoring and contamination detection, no published data about volatile compounds of shea butter are available so far. In this investigation, the characteristic volatiles in the headspace of original African shea butter samples were identified by using SPME‐capillary‐GC coupled to a mass selective detector. Almost 100 different volatile components were identified, e.g. fatty acids, saturated and unsaturated aldehydes and ketones, terpenes, and typical Maillard reaction products such as methylfuranes and pyrazines. Furthermore, the samples have been olfactorily evaluated by a panel of professional flavorists and trained analytical chemists. It can be stated that variations in processing conditions of shea butter result in considerable differences in the composition of headspace volatiles, detected by SPME‐GC‐MS and human olfaction.  相似文献   
22.
Determining good parameter estimates in (exponential smooth transition autoregressive) models is known to be difficult. We show that the phenomena of getting strongly biased estimators is a consequence of the so‐called identification problem, the problem of properly distinguishing the transition function in relation to extreme parameter combinations. This happens in particular for either very small or very large values of the error term variance. Furthermore, we introduce a new alternative model – the TSTAR model – which has similar properties as the ESTAR model but reduces the effects of the identification problem. We also derive a linearity and a unit root test for this model.  相似文献   
23.
Wood pellets have been used in domestic heating appliances for three decades. However, because the share of renewable energy for heating will likely rise over the next several years, alternative biomass fuels, such as short-rotation coppice or energy crops, will be utilized. We tested particulate emissions from the combustion of standard softwood pellets and three alternative pellets (poplar, Miscanthus sp., and wheat straw) for their ability to induce inflammatory, cytotoxic, and genotoxic responses in a mouse macrophage cell line. Our results showed clear differences in the chemical composition of the emissions, which was reflected in the toxicological effects. Standard softwood and straw pellet combustion resulted in the lowest PM1 mass emissions. Miscanthus sp. and poplar combustion emissions were approximately three times higher. Emissions from the herbaceous biomass pellets contained higher amounts of chloride and organic carbon than the emissions from standard softwood pellet combustion. Additionally, the emissions of the poplar pellet combustion contained the highest concentration of metals. The emissions from the biomass alternatives caused significantly higher genotoxicity than the emissions from the standard softwood pellets. Moreover, straw pellet emissions caused higher inflammation than the other samples. Regarding cytotoxicity, the differences between the samples were smaller. Relative toxicity was generally highest for the poplar and Miscanthus sp. samples, as their emission factors were much higher. Thus, in addition to possible technical problems, alternative pellet materials may cause higher emissions and toxicity. The long-term use of alternative fuels in residential-scale appliances will require technological developments in both burners and filtration.

Copyright © 2016 American Association for Aerosol Research  相似文献   

24.
Neglected tropical diseases caused by parasitic infections are an ongoing and increasing concern. They are a burden to human and animal health, having the most devastating effect on the world′s poorest countries. Building upon our previously reported triazole analogues, in this study we describe the synthesis and biological testing of other novel heterocyclic acetogenin‐inspired derivatives, namely 3,5‐isoxazoles, furoxans, and furazans. Several of these compounds maintain low‐micromolar levels of inhibition against Trypanosoma brucei, whilst having no observable inhibitory effect on mammalian cells, leading to the possibility of novel lead compounds for selective treatment.  相似文献   
25.
Magnetic composite particles with a magnetic core consisting of superparamagnetic iron oxide and a cover layer of hydrophobic polyvinylbenzylchloride are described. The magnetite was prepared by precipitation starting with mixed iron II and iron III salts and coating of the solid with oleic acid. The coating is conducted via the liquid–liquid phase transfer. Thereby oleic acid adsorbed on the magnetite surface. In a second step the oleic acid treated magnetite was coated with polyvinylbenzylchloride in a miniemulsion polymerization to get a protective layer. The obtained magnetite core-shell nano-composites with chlorine functionality were characterized by different methods: particle size measurement, acid treatment, iron content, morphology and elemental profiles across the composite particles diameter. The test result reveals the binding of the iron oxide inside the composites which can be also recognize in TEM pictures.  相似文献   
26.
Mammalian cells are the preferred host for the manufacture of a wide range of biopharmaceuticals, but production costs are high owing to low productivity. A range of rational engineering strategies have been pursued in order to increase volumetric product titres from mammalian cells, such as delaying apoptosis, manipulation of the cell cycle, and improving metabolism and protein processing. Unfortunately, outcomes from these strategies have been mixed, with few instances where significant improvements in product yield have been achieved. This article reviews and contrasts many of the engineering strategies attempted to date, highlighting the variability and context specificity in outcome. The paper argues that this is a reflection of the complexity of mammalian cells, and that a deeper understanding of the biology underpinning protein production for biotechnological purposes is required. Copyright © 2011 Society of Chemical Industry  相似文献   
27.
Abstract

Cell exposure experiments at the air-liquid interface (ALI) are used increasingly as indicators for health effects and for the impact of aerosols on the lung. Thereby the aerosol particles are kept airborne and can deposit on a cell surface area similar to the human respiratory tract (RT). However, geometry and air flow rates of an ALI system deviate considerably from the RT. As the tissue-delivered particle dose to the lungs (TD) can hardly be measured, computer models of particle deposition are used here to mimic both the particle deposition at ALI and in the RT. An ALI exposure setup (VitroCell GmbH) for an airflow rate of 100 cm3 min?1 is selected, where the particle deposition model has been verified experimentally. For the RT we use the hygroscopic lung deposition model of Ferron et al. (2013 Ferron, G. A., S. Upadhyay, R. Zimmermann, and E. Karg. 2013. Model of the deposition of aerosol particles in the respiratory tract of the rat. II. Hygroscopic particle deposition. J. Aerosol Med. Pulm. Drug Deliv. 26 (2):10119. doi:10.1089/jamp.2011.0965.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). Model runs are performed for the particle deposition and for the deposited particles per surface area in both the ALI and the RT. The results show that the ALI-deposited mass is 1-2 orders of magnitude higher than in the alveolar region, because the surface area of the lung region is substantially larger. A particle size range from 40 to 450 nm is identified, where the ratio of both the deposition in a lung region and the deposition at the ALI varies by a factor less than two. Mean values for this ratio are 31 and 101 for the tracheo-bronchial and the alveolar region, respectively. The same size range is found for the ratio of the deposited particles per surface area in a lung region and at the ALI. For this range the mean surface deposition at the ALI is 23- and 1575-times larger than in the tracheo-bronchial and the alveolar lung region, respectively. The effect is partly compensated by different flow rate and cell size.

Copyright © 2020 American Association for Aerosol Research  相似文献   
28.
Flooding induces low-oxygen environments (hypoxia or anoxia) that lead to energy disruption and an imbalance of reactive oxygen species (ROS) production and scavenging enzymes in plants. The influence of hypoxia on roots of hydroponically grown maize (Zea mays L.) plants was investigated. Gene expression (RNA Seq and RT-qPCR) and proteome (LC–MS/MS and 2D-PAGE) analyses were used to determine the alterations in soluble and membrane-bound class III peroxidases under hypoxia. Gel-free peroxidase analyses of plasma membrane-bound proteins showed an increased abundance of ZmPrx03, ZmPrx24, ZmPrx81, and ZmPr85 in stressed samples. Furthermore, RT-qPCR analyses of the corresponding peroxidase genes revealed an increased expression. These peroxidases could be separated with 2D-PAGE and identified by mass spectrometry. An increased abundance of ZmPrx03 and ZmPrx85 was determined. Further peroxidases were identified in detergent-insoluble membranes. Co-regulation with a respiratory burst oxidase homolog (Rboh) and key enzymes of the phenylpropanoid pathway indicates a function of the peroxidases in membrane protection, aerenchyma formation, and cell wall remodeling under hypoxia. This hypothesis was supported by the following: (i) an elevated level of hydrogen peroxide and aerenchyma formation; (ii) an increased guaiacol peroxidase activity in membrane fractions of stressed samples, whereas a decrease was observed in soluble fractions; and (iii) alterations in lignified cells, cellulose, and suberin in root cross-sections.  相似文献   
29.
30.
Nanostructured Cu(x)Zn(1-x)Al(2)O(4) with a Cu:Zn ratio of ?:? has been prepared by a microwave-assisted hydrothermal synthesis at 150 °C and used as a precursor for Cu/ZnO/Al(2)O(3)-based catalysts. The spinel nanoparticles exhibit an average size of approximately 5 nm and a high specific surface area (above 250 m(2) g(-1)). Cu nanoparticles of an average size of 3.3 nm can be formed by reduction of the spinel precursor in hydrogen and the accessible metallic Cu(0) surface area of the reduced catalyst was 8 m(2) g(-1). The catalytic performance of the material in CO(2) hydrogenation and methanol steam reforming was compared with conventionally prepared Cu/ZnO/Al(2)O(3) reference catalysts. The observed lower performance of the spinel-based samples is attributed to a lack of synergetic interaction of the Cu nanoparticles with ZnO due to the incorporation of Zn(2+) in the stable spinel lattice. Despite its lower performance, however, the nanostructured nature of the spinel catalyst was stable after thermal treatment up to 500 °C in contrast to other Cu-based catalysts. Furthermore, a large fraction of the re-oxidized copper migrates back into the spinel upon calcination of the reduced catalyst, thereby enabling a regeneration of sintered catalysts after prolonged usage at high temperatures. Similarly prepared samples with Ga instead of Al exhibit a more crystalline catalyst with a spinel particle size around 20 nm. The slightly decreased Cu(0) surface area of 3.2 m(2) g(-1) due to less copper incorporation is not a significant drawback for the methanol steam reforming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号