首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2632篇
  免费   112篇
  国内免费   3篇
电工技术   40篇
综合类   9篇
化学工业   641篇
金属工艺   47篇
机械仪表   31篇
建筑科学   171篇
矿业工程   6篇
能源动力   74篇
轻工业   212篇
水利工程   20篇
石油天然气   6篇
无线电   256篇
一般工业技术   525篇
冶金工业   256篇
原子能技术   15篇
自动化技术   438篇
  2023年   41篇
  2022年   49篇
  2021年   104篇
  2020年   55篇
  2019年   60篇
  2018年   59篇
  2017年   58篇
  2016年   85篇
  2015年   70篇
  2014年   120篇
  2013年   139篇
  2012年   159篇
  2011年   187篇
  2010年   118篇
  2009年   120篇
  2008年   136篇
  2007年   127篇
  2006年   121篇
  2005年   107篇
  2004年   85篇
  2003年   58篇
  2002年   63篇
  2001年   34篇
  2000年   53篇
  1999年   41篇
  1998年   60篇
  1997年   48篇
  1996年   51篇
  1995年   39篇
  1994年   41篇
  1993年   28篇
  1992年   15篇
  1991年   20篇
  1990年   14篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   14篇
  1984年   12篇
  1983年   14篇
  1982年   11篇
  1981年   13篇
  1980年   9篇
  1979年   9篇
  1978年   11篇
  1977年   5篇
  1976年   11篇
  1975年   5篇
  1973年   7篇
排序方式: 共有2747条查询结果,搜索用时 11 毫秒
51.
Starches isolated from yam varieties of Dioscorea alata and Dioscorea cayenensisrotundata species were prepared at different time–temperature conditions and characterised by DSC, amperometric iodine titration, light microscopy and rheology and compared to native and chemical modified tapioca starches. The observation by light microscopy showed different morphologies of the granules when heated above 100°C and the tendency for disintegration decreased in the order native tapioca starch > yam starch > modified tapioca starch. Differences between yam and tapioca starches were also revealed by DSC. Yam starch enthalpy is higher than tapioca starch, but the peak temperature is low. However, the significant differences between yam and the other tested starches were found in terms of their rheological behaviour. The viscosity of yam starch was very stable at high temperatures on the viscograph. With this property, yam starch can be used as thickening and gelling agent in food.  相似文献   
52.
Electrolyzed water and its application in the food industry   总被引:6,自引:0,他引:6  
Electrolyzed water (EW) is gaining popularity as a sanitizer in the food industries of many countries. By electrolysis, a dilute sodium chloride solution dissociates into acidic electrolyzed water (AEW), which has a pH of 2 to 3, an oxidation-reduction potential of >1,100 mV, and an active chlorine content of 10 to 90 ppm, and basic electrolyzed water (BEW), which has a pH of 10 to 13 and an oxidation-reduction potential of -800 to -900 mV. Vegetative cells of various bacteria in suspension were generally reduced by > 6.0 log CFU/ml when AEW was used. However, AEW is a less effective bactericide on utensils, surfaces, and food products because of factors such as surface type and the presence of organic matter. Reductions of bacteria on surfaces and utensils or vegetables and fruits mainly ranged from about 2.0 to 6.0 or 1.0 to 3.5 orders of magnitude, respectively. Higher reductions were obtained for tomatoes. For chicken carcasses, pork, and fish, reductions ranged from about 0.8 to 3.0, 1.0 to 1.8, and 0.4 to 2.8 orders of magnitude, respectively. Considerable reductions were achieved with AEW on eggs. On some food commodities, treatment with BEW followed by AEW produced higher reductions than did treatment with AEW only. EW technology deserves consideration when discussing industrial sanitization of equipment and decontamination of food products. Nevertheless, decontamination treatments for food products always should be considered part of an integral food safety system. Such treatments cannot replace strict adherence to good manufacturing and hygiene practices.  相似文献   
53.
The oxidation kinetics of As(III) with natural and technical oxidants is still notwell understood, despite its importance in understanding the behavior of arsenic in the environment and in arsenic removal procedures. We have studied the oxidation of 6.6 microM As(II) by dissolved oxygen and hydrogen peroxide in the presence of Fe(II,III) at pH 3.5-7.5, on a time scale of hours. As(III) was not measurably oxidized by O2, 20-100 microM H2O2, dissolved Fe(III), or iron(III) (hydr)-oxides as single oxidants, respectively. In contrast, As(III) was partially or completely oxidized in parallel to the oxidation of 20-90 microM Fe(II) by oxygen and by 20 microM H2O2 in aerated solutions. Addition of 2-propanol as an *OH-radical scavenger quenched the As(III) oxidation at low pH but had little effect at neutral pH. High bicarbonate concentrations (100 mM) lead to increased oxidation of As-(III). On the basis of these results, a reaction scheme is proposed in which H2O2 and Fe(II) form *OH radicals at low pH but a different oxidant, possibly an Fe(IV) species, at higher pH. With bicarbonate present, carbonate radicals might also be produced. The oxidant formed at neutral pH oxidizes As(III) and Fe(II) but does not react competitively with 2-propanol. Kinetic modeling of all data simultaneously explains the results quantitatively and provides estimates for reaction rate constants. The observation that As(III) is oxidized in parallel to the oxidation of Fe(II) by O2 and by H2O2 and that the As(III) oxidation is not inhibited by *OH-radical scavengers at neutral pH is significant for the understanding of arsenic redox reactions in the environment and in arsenic removal processes as well as for the understanding of Fenton reactions in general.  相似文献   
54.
Antimony is used in large quantities in a variety of products, though it has been declared as a pollutant of priority interest by the Environmental Protection Agency of the United States (USEPA). Oxidation processes critically affect the mobility of antimony in the environment since Sb(V) has a greater solubility than Sb(lll). In this study, the cooxidation reactions of Sb(lIl) with Fe(ll) and both O2 and H2O2 were investigated and compared to those of As(III). With increasing pH, the oxidation rate coefficients of Sb(lll) in the presence of Fe(ll) and O2 increased and followed a similar pH trend as the Fe(ll) oxidation by O2. Half-lives of Sb(lll) were 35 and 1.4 h at pH 5.0 and pH 6.2, respectively. The co-oxidation with Fe(ll) and H2O2 is about 7000 and 20 times faster than with Fe(ll) and O2 at pH 3 and pH 7, respectively. For both systems, *OH radicals appear to be the predominant oxidant below approximately pH 4, while at more neutral pH values, other unknown intermediates become important. The oxidation of As(lll) follows a similar pH trend as the Sb(lll) oxidation; however, As(lll) oxidation was roughly 10 times slower and only partly oxidized in most of the experiments. This study shows that the Fe(ll)-mediated oxidation of Sb(Ill) can be an important oxidation pathway at neutral pH values.  相似文献   
55.
In the current study, the development of the silicate structure of synthetic calcium silicate hydrates with different calcium contents was followed by in-situ infrared (IR) spectroscopy and correlated to the in-situ phase development evaluated by X-ray diffraction (XRD). A baseline correction method initially developed for X-ray diffractograms was successfully adapted for the complex background of the fingerprint region in in-situ IR, which significantly contributed to signal quality and reproducibility. The development of separate silicate infrared bands could be monitored over 24 h of reaction. These bands could be assigned to oligomeric and dimeric species based on their time and stoichiometry-dependent development. It was clearly shown that the main peak of the dimeric silicate species was overlooked in the literature. The correlation of time-dependent events to in-situ XRD revealed that changes in the unit cell of calcium silicate hydrate are related to silicate polymerization. The results were compared to 29Si-MAS-NMR, which highlighted the benefits of in-situ IR spectroscopy.  相似文献   
56.
The development of nanocarriers (NC) for biomedical applications has gained large interest due to their potential to co-deliver drugs in a cell-type-targeting manner. However, depending on their surface characteristics, NC accumulate serum factors, termed protein corona, which may affect their cellular binding. We have previously shown that NC coated with carbohydrates to enable biocompatibility triggered the lectin-dependent complement pathway, resulting in enhanced binding to B cells via complement receptor (CR)1/2. Here we show that such NC also engaged all types of splenic leukocytes known to express CR3 at a high rate when NC were pre-incubated with native mouse serum resulting in complement opsonization. By focusing on dendritic cells (DC) as an important antigen-presenting cell type, we show that CR3 was essential for binding/uptake of complement-opsonized NC, whereas CR4, which in mouse is specifically expressed by DC, played no role. Further, a minor B cell subpopulation (B-1), which is important for first-line pathogen responses, and co-expressed CR1/2 and CR3, in general, engaged NC to a much higher extent than normal B cells. Here, we identified CR-1/2 as necessary for binding of complement-opsonized NC, whereas CR3 was dispensable. Interestingly, the binding of complement-opsonized NC to both DC and B-1 cells affected the expression of activation markers. Our findings may have important implications for the design of nano-vaccines against infectious diseases, which codeliver pathogen-specific protein antigen and adjuvant, aimed to induce a broad adaptive cellular and humoral immune response by inducing cytotoxic T lymphocytes that kill infected cells and pathogen-neutralizing antibodies, respectively. Decoration of nano-vaccines either with carbohydrates to trigger complement activation in vivo or with active complement may result in concomitant targeting of DC and B cells and thereby may strongly enhance the extent of dual cellular/humoral immune responses.  相似文献   
57.
This article outlines advances in molecular modeling and simulation using massively parallel high‐performance computers (HPC). In the SkaSim project, partners from the HPC community collaborated with users from science and industry. The aim was to optimize the prediction of thermodynamic property data in terms of efficiency, quality and reliability using HPC methods. In this context, various topics were dealt with: atomistic simulation of homogeneous gas bubble formation, surface tension of classical fluids and ionic liquids, multicriteria optimization of molecular models, the development of the molecular simulation codes ls1 mardyn and ms2, atomistic simulation of gas separation processes, molecular membrane structure generators, transport resistors and the evaluation of predictive property data models based on specific mixture types.  相似文献   
58.
Abstract. In this article, we study and compare the properties of several bootstrap unit‐root tests recently proposed in the literature. The tests are Dickey–Fuller (DF) or Augmented DF, based either on residuals from an autoregression and the use of the block bootstrap or on first‐differenced data and the use of the stationary bootstrap or sieve bootstrap. We extend the analysis by interchanging the data transformations (differences vs. residuals), the types of bootstrap and the presence or absence of a correction for autocorrelation in the tests. We show that two sieve bootstrap tests based on residuals remain asymptotically valid. In contrast to the literature which focuses on a comparison of the bootstrap tests with an asymptotic test, we compare the bootstrap tests among themselves using response surfaces for their size and power in a simulation study. This study leads to the following conclusions: (i) augmented DF tests are always preferred to standard DF tests; (ii) the sieve bootstrap performs better than the block bootstrap; (iii) difference‐based tests appear to have slightly better size properties, but residual‐based tests appear more powerful.  相似文献   
59.
60.
The tumor suppressor Fhit and its substrate diadenosine triphosphate (Ap3A) are important factors in cancer development and progression. Fhit has Ap3A hydrolase activity and cleaves Ap3A into adenosine monophosphate (AMP) and adenosine diphosphate (ADP); this is believed to terminate Fhit‐mediated signaling. How the catalytic activity of Fhit is regulated and how the Fhit ? Ap3A complex might exert its growth‐suppressive function remain to be discovered. Small‐molecule inhibitors of the enzymatic activity of Fhit would provide valuable tools for the elucidation of its tumor‐suppressive functions. Here we describe the development of a high‐throughput screen for the identification of such small‐molecule inhibitors of Fhit. Two clusters of inhibitors that decreased the activity of Fhit by at least 90 % were identified. Several derivatives were synthesized and exhibited in vitro IC50 values in the nanomolar range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号