首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   12篇
  国内免费   1篇
电工技术   4篇
综合类   1篇
化学工业   100篇
金属工艺   26篇
机械仪表   10篇
建筑科学   14篇
能源动力   24篇
轻工业   24篇
水利工程   3篇
石油天然气   2篇
无线电   45篇
一般工业技术   112篇
冶金工业   58篇
原子能技术   6篇
自动化技术   35篇
  2023年   6篇
  2022年   8篇
  2021年   9篇
  2020年   13篇
  2019年   8篇
  2018年   12篇
  2017年   7篇
  2016年   18篇
  2015年   9篇
  2014年   14篇
  2013年   31篇
  2012年   28篇
  2011年   29篇
  2010年   13篇
  2009年   20篇
  2008年   22篇
  2007年   15篇
  2006年   16篇
  2005年   19篇
  2004年   14篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   8篇
  1998年   9篇
  1997年   10篇
  1996年   8篇
  1995年   10篇
  1994年   7篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1983年   7篇
  1982年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
排序方式: 共有464条查询结果,搜索用时 0 毫秒
81.
In the context of sustainable watershed management, natural fibers mixed with soil have applications in irrigation and drainage projects such as river levees, contour bunds, temporary canal diversion works, temporary check dams, soil structures, stream restoration, etc., for controlling seepage. In this study, a number of experiments were carried out for determining the seepage velocity and piping resistance of different types of soils mixed randomly with coir fibers. Three types of soils are used in this study. The experiments were carried out for various hydraulic heads, fiber contents, and fiber lengths. Discharge velocity and seepage velocity of flow of water through soil is calculated in each case and compared with plain soil. It is observed that fibers reduce the seepage velocity of plain soil considerably and thus increase the piping resistance of soil. Regression equations based on experiments are developed for quantifying the seepage velocity and piping resistance considering hydraulic gradient, fiber contents, and fiber lengths. Suitability of coir fibers for field applications with typical examples is also highlighted. The results show that coir fiber mixed soil can be used to increase the piping resistance and reduce seepage velocity in the above mentioned applications.  相似文献   
82.
83.
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.  相似文献   
84.
The kinetics of domain growth in Ni4Mo in the temperature range of 600 to 850 °C were investigated using transmission electron microscopy. It was found that domain growth in Ni4Mo is analogous to metallurgical grain growth and can be described by the expressionD n =kt, whereD is the average domain size, t is the aging time, k is a constant, and the exponent n is the reciprocal of the slope of the log D vs log t plot. The value of n changed with temperature from 2.0 at 850 and 800 °C to 2.9 at 700 and 600 °C. This change was explained in terms of relative domain orientation effects. The activation energy for domain growth was obtained as 69 Kcal/mole (2.9 × 105 Joules/mole) in the temperature range of 800 to 850 °C and as 92 Kcal/mole (3.85 x 105 Joules/mole) in the temperature range of 600 to 700 °C, which on comparison with available diffusion data established that the growth process was interface-controlled at the higher temperatures and bulk diffusion-controlled at the lower temperatures.  相似文献   
85.
86.
The effects of microstructure on the tensile properties and deformation behavior of a binary Ti-48Al gamma titanium aluminide were studied. Tensile-mechanical properties of samples with microstructures ranging from near γ to duplex to fine grained, near- and fully-lamellar were determined at a range of temperatures, and the deformation structures in these characterized by transmission electron microscopy (TEM). Microstructure was observed to exert a strong influence on the tensile properties, with the grain size and lamellar volume fraction playing connected, but complex, roles. Acoustic emission response monitored during the tensile test revealed spikes whose amplitude and frequency increased with an increase in the volume fraction of lamellar grains in the microstructure. Analysis of failed samples suggested that microcracking was the main factor responsible for the spikes, with twinning providing a minor contribution in the near-lamellar materials. The most important factor that controls ductility of these alloys is grain size. The ductility, yield stress, and work-hardening rate of the binary Ti-48Al alloy exhibit maximum values between 0.50 and 0.60 volume fraction of the lamellar constituent. The high work-hardening rate, which is associated with the low mobility of dislocations, is the likely cause of low ductility of these alloys. In the near-γ and duplex structures, slip by motion of 1/2<110] unit dislocations and twinning are the prevalent deformation modes at room temperature (RT), whereas twinning is more common in the near- and fully-lamellar structures. The occurrence of twinning is largely dictated by the Schmid factor. The 1/2<110] unit dislocations are prevalent even for grain orientations for which the Schmid factor is higher for <101] superdislocations, though the latter are observed in favorably oriented grains. The activity of both of these systems is responsible for the higher ductility at ambient temperatures compared with Al-rich single-phase γ alloys. A higher twin density is observed in lamellar grains, but their propagation depends on the orientation and geometry of the individual γ lamellae. The increase in ductility at high temperatures correlates with increased activity of 1/2<110] dislocations (including their climb motion) and twin thickening. The role of microstructural variables on strength, ductility, and fracture are discussed. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   
87.
We have examined the incubation times in two alloys, 7075-T651 aluminum alloy and 4140 steel, as a function of applied K, using the published data in aqueous environment. The role of overloads was compared with the results from those without overloads, for a given environment. Effect of environment (NaCl vs deionized water) was also examined. The results show that in a constant K test, the incubation time increases with decreasing K. When a single overload cycle was applied, the time increased with percent overload for a constant background K, indicating that overload cycle affected the crack tip driving forces. These effects varied with the environment. The changes in the incubation times are analyzed considering one-to-one correspondence between the crack tip driving force and the times. Overloads contributed to compressive residual or internal stresses, thereby affecting the crack tip driving force. The stresses are related to changes in the plastic zone (PZ) sizes formed before and after the overloads. The effective stress intensity due to internal stress, K int, is defined and is shown to be a function of PZ size. Similarly, condition for crack initiation is expressed as K total = K app ± K int ≥ K Iscc. A detailed methodology for the determination of K int is outlined.  相似文献   
88.
The environmental effects on the low cycle fatigue (LCF) behavior of 2024-T351 and 7075-T651 aluminum alloys were studied at room temperature. The specimens were subjected to identical LCF tests at strain ratio R of −1 and frequency of 5 Hz in three environments: vacuum, air and 1% NaCl solution of pH 2. A separate group of specimens was pre-corroded in 1% NaCl solution and then LCF-tested in air. Their strain–life relations and cyclic stress–strain responses were investigated and compared. Furthermore, the fracture surface morphology was evaluated to find the association of LCF behavior and fractographic features under different environmental conditions.  相似文献   
89.
The fatigue crack growth behaviors of Laser formed and ingot metallurgy (IM) Ti–6Al–4V alloys were studied in three environments: vacuum, air and 3.5% NaCl solution. Taking the Unified Fatigue Damage Approach, the fatigue crack growth data were analyzed with two intrinsic parameters, stress intensity amplitude ΔK and maximum stress intensity Kmax, and their limiting values ΔK* and . Fatigue crack growth rates da/dN were found increase with stress ratio R, highest in 3.5% NaCl solution, somewhat less in air and lowest in vacuum, and higher in IM alloy than in Laser formed one. In 3.5% NaCl solution, stress corrosion cracking (SCC) was superimposed on fatigue at R=0.9 for where Kmax>KISCC, the threshold stress intensity for SCC. This and environment-assisted fatigue crack growth were evidenced by the deviation in fatigue crack growth trajectory (ΔK* vs. curve) from the pure fatigue line where . Furthermore, the fractographic features, identified along the trajectory path, reflected the fatigue crack growth behaviors of both alloys in a given environment.  相似文献   
90.
This paper represents a summary of experimental work carried out to find the effect of various pre- and post-weld heat treatments on Ti-6Al-4V alloy. In the as-welded state the samples exhibit about 80% of the tensile ductility and about 90–95% of the impact/fracture toughness of the base metal. Low temperature stress relieving or ageing carried out subsequent to the welding operation improves the tensile properties but decreases the toughness at the fusion zone. Solution treatment followed by welding and ageing or the post-weld solution treatment and ageing treatment leads to only a marginal increase in tensile strength at the expense of toughness at the fusion zone. High temperature annealing of the welded samples does not increase the tensile ductility but improves the toughness at both the fusion zone and the heat affected zone. The above facts and a special burst-pressure test conducted on a gas bottle in the as-EB welded state show that Ti-6Al-4V components can be used without subjecting them to any post-weld heat treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号