The oxidation stability of castor oil fatty methyl ester (FAME), doped with four different phenolic antioxidants, was evaluated using a rapid method of thermal and air-contact degradation. The methodology is based on the induction times observed when the samples are contacted with pure oxygen at elevated pressures and temperatures. The results indicate different performances of the antioxidants as well as synergisms between antioxidants and biodiesel. In general, the addition of antioxidants increased from 6-15 times the stability of castor oil FAME., with BHA (butylated hydroxyanisol) showing the best results for improving antioxidation in castor oil biodiesel. 相似文献
The multidomain, catalytically self‐sufficient cytochrome P450 BM‐3 from Bacillus megaterium (P450BM3) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus‐guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3. Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild‐type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half‐lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD‐binding domain and that the optimal temperature (Topt) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts. 相似文献
Silicon - The characterization of ion beam current density distribution and beam uniformity is crucial for improving broad-beam ion source technologies. The design of the broad ion beam extraction... 相似文献
The adaptive immune system has implications in pathology of Parkinson’s disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells. 相似文献
A convenient ligand‐free catalytic system has been developed for the chemoselective cyclization reaction of various α‐allenol derivatives by palladium nanoparticles (PdNPs) in an aqueous reaction medium.
Grape skin contains large amounts of different flavonoids so it can be used for their recovery. Optimization of enzyme-assisted extraction of flavonoids was conducted using oenological enzyme preparations with respect to enzyme dosage, temperature, extraction time, pH, and enzyme preparation. Optimal conditions were obtained using enzyme preparation Lallzyme EX-V, at the temperature of 45°C, time of 3 h, pH 2.0, and enzyme dosage of 10.52 mg/g. The new optimized extraction method is less expensive, simple, accurate, and selective for the recovery of simple flavonoids. It is based on an environmentally-friendly extraction solvent which may provide a valuable alternative to conventional methods. 相似文献