首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   2篇
电工技术   3篇
综合类   1篇
化学工业   75篇
金属工艺   4篇
机械仪表   7篇
建筑科学   1篇
矿业工程   1篇
能源动力   11篇
轻工业   16篇
水利工程   1篇
无线电   6篇
一般工业技术   56篇
冶金工业   2篇
自动化技术   18篇
  2024年   6篇
  2023年   7篇
  2022年   13篇
  2021年   13篇
  2020年   12篇
  2019年   7篇
  2018年   11篇
  2017年   4篇
  2016年   13篇
  2015年   14篇
  2014年   8篇
  2013年   10篇
  2012年   13篇
  2011年   16篇
  2010年   15篇
  2009年   7篇
  2008年   9篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有202条查询结果,搜索用时 0 毫秒
141.
    
Live-cell Ca2+ fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for static images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to time-dependent image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca2+ microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca2+ signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.  相似文献   
142.
    
Plasticized polyvinyl chloride (PVC) films were prepared by melt compounding and compression molding using epoxidized cardanol (EC), a biobased plasticizer and its plasticization effect was compared with epoxidized soybean oil (ESBO) and dioctyl phthalate (DOP). The mechanical, migration, thermal, and barrier properties of the plasticized films were compared. The effect of replacing DOP with EC on the properties of PVC films was also investigated. The tensile strength, elongation at break, tensile modulus and impact strength values of PVC/EC films were higher in comparison to PVC/DOP and PVC/ESBO films at a fixed plasticizer loading of 40 wt.%. Also, the films prepared with a mixture of DOP + EC showed higher tensile strength and elongation at break compared to that of films prepared with only DOP. The PVC/EC films showed good thermal stability and reduced oxygen transmission rate (OTR) compared to PVC/DOP films. The addition of graphene and nanoclay in the PVC/plasticizer system exhibited an increase in oxygen transmission. However, the oxygen barrier property of nano filler incorporated PVC/EC films was better than PVC/DOP films. All the films showed negligible water vapor transmission rate (WVTR).  相似文献   
143.
    
Covalent organic frameworks (COFs) are an emerging class of organic crystalline polymers with well‐defined molecular geometry and tunable porosity. COFs are formed via reversible condensation of lightweight molecular building blocks, which dictate its geometry in two or three dimensions. Among COFs, 2D COFs have garnered special attention due to their unique structure composed of two‐dimensionally extended organic sheets stacked in layers generating periodic columnar π‐arrays, functional pore space, and their ease of synthesis. These unique features in combination with their low density, high crystallinity, large surface area, and biodegradability have made them an excellent candidate for a plethora of applications ranging from energy to biomedical sciences. In this article, the evolution of 2D COFs is briefly discussed in terms of different types of chemical linkages, synthetic strategies of bulk and nanoscale 2D COFs, and their tunability from a biomedical perspective. Next, the biomedical applications of 2D COFs specifically for drug delivery, phototherapy, biosensing, bioimaging, biocatalysis, and antibacterial activity are summarized. In addition, current challenges and emerging approaches in designing 2D COFs for advanced biomedical applications are discussed.  相似文献   
144.
    
Disposal of waste plastic and excessive use of fossil fuels have caused environmental problems in the world. According to an estimate, more than 100 million tonnes plastics are produced every year and after their usage these plastics are discarded to become waste. Both plastic- and petroleum-derived fuels are hydrocarbons that contain the elements of carbon and hydrogen. The main difference between these hydrocarbons is that plastic molecules have longer carbon chains than those of LPG, petrol and diesel fuels. Therefore, it is possible to convert waste plastic into fuels. Pyrolysis is a prospective method to handle waste plastics. The purpose of this study is to explore the ability of different types of catalysts in conversion of plastic waste to low-emissive hydrocarbon fuel. Pyrolysis experiments were conducted using three different catalysts to check their ability in increasing the production. Catalytic degradation with potato peels yielded 74.52 wt% liquid fuel product. So far, the use of potato peels as a biocatalyst in pyrolysis process has not been reported. The pyrolysis oil was analyzed by GC/MS to determine its elemental composition. The liquid products obtained were compatible with international standards. Therefore, two main global problems such as problem of waste plastic management and problem of shortage of fuel are being tackled together.  相似文献   
145.
146.
In this paper, we examine the response of a crack tip in an electrically conducting material subjected to a combination of mechanical load as well as a high density electrical current. We present a detailed examination of the process of evolution of melting and ejection, as revealed by high speed photography. The critical mechanical and electrical parameters that govern crack extension are then determined for two different alloys. Finally, we present an evaluation of the phenomenon through a coupled field simulation to examine the nature of the interaction between the electric field and the thermo-mechanical response.  相似文献   
147.
This article presents an analysis of the erosion wear response of borosilicate glass microsphere (BGM)-coated metal specimens subjected to reproducible erosive situations. The coatings are deposited on metal substrates by a plasma spraying route using an atmospheric plasma spray setup working on a nontransferred arc mode. The response of these coatings to solid particle erosion for different test parameters is studied. The erosion test schedule is planned as per Taguchi's experimental design and is carried out under controlled laboratory conditions using an air jet–type erosion tester. The analysis of test results reveals that the impact velocity is the most significant among various factors influencing the erosion wear rate of these coatings. A prediction tool based on artificial neural networks (ANNs) is then implemented to predict the triboperformance of such coatings in regard to their erosion rates under different test conditions. ANN is a technique that takes into account the training, testing, and validation protocols using the database generated from experimentation. This technique helps in saving time and resources for a large number of experimental trials and it is seen in this work that it can successfully predict the wear rate of the coatings for test conditions both within and beyond the experimental domain.  相似文献   
148.
Multilayer lithium tantalate thin films were deposited on Pt-Si [Si(111)/SiO2/TiO2/Pt(111)] substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 °C) for 15 min. The films are polycrystalline at 650 °C and at other annealing conditions below 650 °C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 °C. These polycrystalline films exhibit spontaneous polarization of 1.5 μC/cm2 at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal.  相似文献   
149.
Short aramid fibre reinforced vinyl ester resin based isotropic composites are fabricated with varying fibre weight fractions (20–50 wt%). The composites were evaluated for their erosion performance under a dynamic set of variables such as impingement angle (30°–90°), impact velocity (43–76 m/s), erodent size (250–600 μm) and stand-off distance (55–85 mm) following design of experiments (DOE) based on Taguchi analysis approach. The thermo-mechanical attributes such as storage modulus, loss modulus and damping properties as viscoelastic responses of the composites were investigated in the temperature range of 0–180 °C for their possible interpretations regarding reinforcement efficiency and energy dissipation aspects relevant to erosion process. An interrelation between the full-width half-maxima (FWHM) of loss modulus peak and erosion rate has emerged indicating the erosion to be mainly controlled by the fibre–matrix interfacial characteristics. The eroded surface morphology investigation by scanning electron microscopy (SEM) revealed the nature of wear-craters, material damage mode and other qualitative attributes responsible in facilitating erosion of the composites.  相似文献   
150.
Ternary nanocomposites were fabricated based on an optimized impact modified polyamide-6 (PA-6)/polypropylene grafted maleic anhydride (PP-g-MA) blend composition with varied concentrations (0–6 wt.% at a step of 2 wt.%) of organoclay, Cloisite 30B™. The morphological attributes such as state of intercalation/exfoliation/crystalline organization and fractured surface topography of the nanocomposites were characterized by transmission electron microscopy (TEM), wide angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM) while the thermal characterizations were done by conducting differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The WAXD/DSC studies have revealed that the crystallinity of the nanocomposites remained unaffected. DMA revealed an increase in glass transition temperature (Tg) of the nanocomposites by ∼14–19 °C relative to the soft polypropylene (PP)-phase, by ∼7–12 °C relative to the neat matrix PA-6 and by ∼4–9 °C relative to the optimized impact toughened PA-6 matrix while simultaneously being accompanied by the appearance of a second phase Tg peak progressively at higher temperatures as a function of nanoclay content, indicating the reinforcement effects/restrictions imposed by the nanoclay layers to the polymer chain mobility. The bulk mechanical response of the nanocomposites such as tensile, flexural and impact properties were studied and its related micromechanics aspects have been investigated using composite theories such as Halpin-Tsai, Hui-Shia, Takayanagi and Pukanszky models to analyze the interfacial effects and its role on the stress transfer efficiency. SEM analysis of fractured surface indicated that the failure mode of the nanocomposites undergoes a switch-over from interfacial-effects assisted fibrillation controlled ductile deformation to nanoclay induced soft PP-phase stiffened semi-ductile response via shear-lips formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号