首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4388篇
  免费   387篇
  国内免费   26篇
电工技术   64篇
综合类   29篇
化学工业   955篇
金属工艺   174篇
机械仪表   293篇
建筑科学   66篇
矿业工程   6篇
能源动力   194篇
轻工业   347篇
水利工程   28篇
石油天然气   6篇
武器工业   1篇
无线电   893篇
一般工业技术   1098篇
冶金工业   177篇
原子能技术   35篇
自动化技术   435篇
  2024年   9篇
  2023年   77篇
  2022年   107篇
  2021年   182篇
  2020年   125篇
  2019年   133篇
  2018年   137篇
  2017年   174篇
  2016年   189篇
  2015年   166篇
  2014年   224篇
  2013年   316篇
  2012年   312篇
  2011年   369篇
  2010年   271篇
  2009年   254篇
  2008年   241篇
  2007年   199篇
  2006年   180篇
  2005年   152篇
  2004年   101篇
  2003年   114篇
  2002年   103篇
  2001年   91篇
  2000年   82篇
  1999年   72篇
  1998年   94篇
  1997年   67篇
  1996年   56篇
  1995年   38篇
  1994年   25篇
  1993年   22篇
  1992年   23篇
  1991年   17篇
  1990年   19篇
  1989年   22篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有4801条查询结果,搜索用时 15 毫秒
21.
High‐molecular‐weight atactic poly(vinyl alcohol) (a‐PVA) gels loaded with (R,S)‐2‐(3‐benzoylphenyl)propionic acid (ketoprofen) were prepared from 5, 6, 7, and 8 g/dL solutions of a‐PVA with a number‐average degree of polymerization of 4000 in an ethylene glycol/water mixture with an aging method to identify the effect of the initial polymer concentration on the swelling behavior, morphology, and thermal properties of a‐PVA gels. Then, the release behavior of ketoprofen from a‐PVA gels was investigated. As the polymer concentration decreased, the ability for network formation decreased, and the degree of swelling of the a‐PVA gels increased. In addition, the enthalpy increased with an increase in the a‐PVA concentration, but the melting temperatures of the gels prepared at different initial polymer concentrations were the same; this indicated that tighter gel networks would be formed by a higher polymer chain density. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
22.
For the flexural reinforcement of bridge and building structure, synthetic materials whose dynamic properties are superior and those containing the merit of corrosion‐proof are widely used as the substitute for a steel plate. Since FRP plate has improved bond strength owing to the fibers externally adhering to the plate, many researches regarding the bond strength improvement have been substantially performed. To search out such bond strength improvement, previous researchers had ever examined the bond strength of FRP plate through their experiment by setting up many variables. However, since the experiment for a research on the bond strength takes much of expenditure for setting up the equipment and is time‐consuming, also is difficult to be carried out, it is limitedly conducted. The purpose of this study was to develop the most suitable artificial neural network model by application of various neural network models and algorithm to the data of the bond strength experiment conducted by previous researchers. Many variables were used as input layers against bond strength: depth, width, modulus of elasticity, tensile strength of FRP plate and the compressive strength, tensile strength, and width of concrete. The developed artificial neural network model has been applied back‐propagation, and its error was learned to be converged within the range of 0.001. Besides, the process for the over‐fitting problem has been dissolved by Bayesian technique. The verification on the developed model was executed by comparison with the test results of bond strength made by other previous researchers, which was never been utilized to the learning as yet. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 5119–5127, 2006  相似文献   
23.
The high melt viscosity of polypropylene was studied by grafting bifunctional monomers, 1,6‐hexanediol diacrylate (HDDA) and tripropylene glycol diacrylate (TPGDA), onto homopolypropylene (HPP) and random ter‐polypropylene (RTPP) under electron‐beam irradiation. Creation of the high‐melt‐viscosity polypropylene was possible at low radiation dosage and low monomer content, under a prohibition of both radiation degradation and homopolymerization. TPGDA monomer was more effective in increasing the melt viscosity of HPP compared with RTPP, whereas HDDA monomer was more effective for enhancing the melt viscosity of RTPP. Such different effects of monomers on melt viscosity may arise from different monomer structures, namely, TPGDA has additional three methyl groups, but HDDA has no methyl groups. Electron‐beam radiation technology, on an increase of the melt viscosity, was much more effective in HPP than RTPP, when compared with virgin polymers. Modified RTPP and HPP with high melt viscosity were capable of foaming with numerous fine cells, of which the modified HPP with 1.5 mmol TPGDA and 0.5 kGy could create more spherical foam cells and its bending strength was 1.5 times more than that of the foamed RTPP. POLYM. ENG. SCI., 46:431–437, 2006. © 2006 Society of Plastics Engineers.  相似文献   
24.
A new type of polyimide/silica (PI/SiO2) hybrid composite films was prepared by blending polymer‐modified colloidal silica with the semiflexible polyimide. Polyimide was solution‐imidized at higher temperature than the glass transition temperature (Tg) using 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐diaminodiphenyl ether (ODA). The morphological observation on the prepared hybrid films by scanning electron microscopy (SEM) pointed to the existence of miscible organic–inorganic phase, which resulted in improved mechanical properties compared with pure PI. The incorporation of the silica structures in the PI matrix also increased both Tg and thermal stability of the resulting films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2053–2061, 2006  相似文献   
25.
Summary Anisotropic orientation of liquid crystalline epoxy(LCE) resin on carbon fiber(CF) surface was investigated and it was correlated with curing behavior and thermomechanical properties of LCE. Anisotropic orientation of a LCE resin was spontaneously induced on CF surface along a long molecular axis of CF during curing and the anisotropic orientation was maintained after curing. Curing of LCE was accelerated by alignment of LCE on CF and anisotropic orientation of LCE enhanced dynamic modulus of CF reinforced LCE composites.  相似文献   
26.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   
27.
Pathline glyphs     
Visualization of pathlines is common and highly relevant for the analysis of unsteady flow. However, pathlines can intersect, leading to visual clutter and perceptual issues. This makes it intrinsically difficult to provide expressive visualizations of the entire domain by an arrangement of multiple pathlines, in contrast to well‐established streamline placement techniques. We present an approach to reduce these problems. It is inspired by glyph‐based visualization and small multiples: we partition the domain into cells, each corresponding to a downscaled version of the entire domain. Inside these cells, a single downscaled pathline is drawn. On the overview scale, our pathline glyphs lead to emergent visual patterns that provide insight into time‐dependent flow behavior. Zooming‐in allows us to analyze individual pathlines in detail and compare neighboring lines. The overall approach is complemented with a context‐preserving zoom lens and interactive pathline‐based exploration. While we primarily target the visualization of 2D flow, we also address the extension to 3D. Our evaluation includes several examples, comparison to other flow visualization techniques, and a user study with domain experts.  相似文献   
28.
The Mobile Harbor (MH) has been recently proposed as a novel maritime cargo transfer system that can move to a container ship anchored in the deep sea and handle containers directly at sea with the aid of a stabilized MH crane. Because this system operates under at-sea conditions, the MH crane must be designed to support an inertia load and wind force, as well as its self-weight. The wave-induced motions of the MH, e.g. rolling, pitching, and heaving, generate a significant amount of inertia load, which has not been considered in the design of conventional quayside cranes installed on stable ground. Wind force is also a critical design factor due to the higher wind velocity in the open sea. In addition to the aforementioned structural rigidity, mass minimization is also important in the structural design of MH cranes because it reduces the overturning moment and therefore enhances ship stability. In this paper, the sensitivities of the design-dependent loads (i.e. self-weight, inertia load, and wind force) are derived with respect to the design variables, and then a topology optimization is conducted with the derived sensitivities in order to obtain a conceptual design. Then, the conceptual design is elaborated into a three-dimensional basic design through shape optimization with design regulations for offshore cranes. Through the integrated design process with the topology and shape optimizations, a conceptual and basic design is successfully obtained for the MH crane.  相似文献   
29.
Summary Isothermal cure kinetics ofEPON HPT 1071/DDS system have been performed by means of differential scanning calorimetry. The maximum cure rate and the extent of conversion at various DDS concentrations were studied as a function of cure temperature. Maximum cure rate increases with increasing cure temperature and DDS concentration. At various DDS concentrations, the maximum cure rate occured between 19–22% conversion. In order to evaluate the kinetic parameters, numerical calculations by means of a Newton-Raphson technique and experimental results obtained from the peak of reaction rate curve were undertaken.  相似文献   
30.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号