首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
电工技术   7篇
化学工业   19篇
金属工艺   1篇
机械仪表   7篇
能源动力   6篇
轻工业   1篇
无线电   3篇
一般工业技术   40篇
冶金工业   4篇
自动化技术   5篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   9篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
11.
The gate-all-around nanowire transistor, due to its extremely tight electrostatic control and vertical integration capability, is a highly promising candidate for sub-5 nm technology nodes. In particular, the junctionless nanowire transistors are highly scalable with reduced variability due to avoidance of steep source/drain junction formation by ion implantation. Here a dual-gated junctionless nanowire p-type field effect transistor is demonstrated using tellurium nanowire as the channel. The dangling-bond-free surface due to the unique helical crystal structure of the nanowire, coupled with an integration of dangling-bond-free, high quality hBN gate dielectric, allows for a phonon-limited field effect hole mobility of 570 cm2 V−1 s−1 at 270 K, which is well above state-of-the-art strained Si hole mobility. By lowering the temperature, the mobility increases to 1390 cm2 V−1 s−1 and becomes primarily limited by Coulomb scattering. The combination of an electron affinity of ≈ 4 eV and a small bandgap of tellurium provides zero Schottky barrier height for hole injection at the metal-contact interface, which is remarkable for reduction of contact resistance in a highly scaled transistor. Exploiting these properties, coupled with the dual-gated operation, we achieve a high drive current of 216 μA μm−1 while maintaining an on-off ratio in excess of 2 × 104. The findings have intriguing prospects for alternate channel material based next-generation electronics.  相似文献   
12.
Graft copolymerization of methyl methacrylate (MMA) onto jute fibers was studied in an aqueous solution using a new class of acidic peroxo salt, potassium monopersulfate, as initiator, under the catalytic influence of Fe(II) under nitrogen atmosphere. The grafting reaction was influenced by the reaction time, temperature, and concentrations of monomer, initiator, and jute fibers. The grafting reactions have also been studied in the presence of various salts and solvents. The maximum grafting percent (385.4%) has been observed at 35°C for the concentration of monomer (1.4082M), initiator (12.9 × 10?3M), catalyst (2.5 × 10?4M), and solvent (acetic acid) composition of (40:60) for a reaction time of 6 h. From the experimental results a suitable mechanism for the graft initiation and termination has been put forth. The graft copolymers have been characterized, and their improved properties such as tensil strength tested.  相似文献   
13.
Ethylene vinyl acetate rubber (45% vinyl acetate content, EVA‐45) and organomodified clay (12Me‐MMT) composites were prepared by solution blending of the rubber and the clay. A combination of X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy studies showed that the composites obtained are on the nanometer scale. The measurements of the dynamic mechanical properties for different compositions over a temperature range (?100 to +100°C) showed that the storage moduli of these rubber–clay nanocomposites are higher above the glass to rubber transition temperature compared to the neat rubber. The tensile strength of the nanocomposites is about 1.6 times higher than that of the EVA‐45. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2216–2220, 2003  相似文献   
14.
Polycrystalline Nd1?x Na x MnO3 ( $x=0.05\mbox{--} 0.20$ ) compounds were prepared in single-phase form with a Pbnm space group. Paramagnetic to ferromagnetic transitions were observed up to a doping concentration of 15% with a maximum T C of 113?K. The x=0.20 sample exhibits a charge order transition at 180?K, with a distinct behavior in magnetization versus field curve. The magnetization versus temperature plot of all these materials exhibits an anomaly at around 40?K, with a signature of spin-glass like behavior. The x=0.10 sample is found to exhibit a maximum spontaneous magnetization value of 3.1?? B at 20?K. The magnetization data could be analyzed based on the Brillouin function model, by accounting for the ferromagnetic interaction. The effective spin contribution of 3d electrons for the double-exchange ferromagnetic interaction and the value of magnetic spin-canting angles were estimated. The measured magnetization is explained on the basis of competing magnetic interaction due to spin-canting. The charge order quenching and the first-order transition from the charge-ordered to ferromagnetic phase are observed for a threshold field of 3?T at 12?K. The electrical resistivity of the above samples exhibits insulating behavior.  相似文献   
15.
This paper addresses the weld joint strength monitoring in pulsed metal inert gas welding (PMIGW) process. Response surface methodology is applied to perform welding experiments. A multilayer neural network model has been developed to predict the ultimate tensile stress (UTS) of welded plates. Six process parameters, namely pulse voltage, back-ground voltage, pulse duration, pulse frequency, wire feed rate and the welding speed, and the two measurements, namely root mean square (RMS) values of welding current and voltage, are used as input variables of the model and the UTS of the welded plate is considered as the output variable. Furthermore, output obtained through multiple regression analysis is used to compare with the developed artificial neural network (ANN) model output. It was found that the welding strength predicted by the developed ANN model is better than that based on multiple regression analysis.  相似文献   
16.
Wear prediction due to the wheel-rail interaction in a railway vehicle has a significant role in the view of running stability (critical speed), dynamic performance and maintenance scheduling. In this article, we have focused on the estimation of wear distribution on the wheel profile through co-simulation between the vehicle and the wear evolution models, built in the multi-body simulation (MBS) software ADAMS (VI-Rail) and MATLAB environments, respectively. As the shape of the contact patches varies from elliptical to non-elliptical depending upon the contact patch location on the rail and the wheel, the contact forces/stresses are calculated by using a combined formulation of semi-Hertzian approach with modified FASTSIM. The wear distribution is obtained using Archard’s wear model. The wheel profiles are updated after calculating the wear depth for a particular distance travelled by the vehicle. The dynamic behavior of the vehicle with the worn wheel profile is utilized to predict additional wear during a further fixed distance of travel and this profile updating and dynamic simulation process is repeated. The vehicle’s dynamic performance and passenger comfort are evaluated for various levels of wheel wear.  相似文献   
17.
18.
The parameter estimation using the traditional kinetic modeling of complex reaction systems will give incorrect results if the reaction mechanism contains a loop. In this work, a thermodynamically consistent kinetic model of the anodic electrochemical hydrogen oxidation reaction mechanism of a solid oxide fuel cell (SOFC) is formulated. An iterative algorithm for estimating the reaction rate constants using the thermodynamically consistent model formulation is developed. The kinetic parameters estimated using the proposed method gives a better fit to the experimental data. Using the concept of ‘Degree of rate control’ it is found that the surface reactions may have a greater role in deciding the overall rate. The proposed iterative parameter estimation algorithm developed in this work can also be adapted to other complex chemical and biochemical reaction networks for which the reaction rate constants need to be estimated using the experimental data.  相似文献   
19.
From a long-term fertilizer experiment on rice–rice cropping in Typic Endoaquept, established at the Central Rice Research Institute, Cuttack, India in 1969, effects of application of composted manure (5 Mg ha−1 year−1) and chemical fertilizers (N, NP, NK, and NPK twice in a year), in series without compost (C0) or with compost (C1) on changes in soil carbon and microbial pools were examined by comparing the soils archived in 1984 and those sampled in 2004. Mean concentrations of soil organic carbon (SOC) varied between 5.5 and 7.6 g kg−1 in 1984, and 6.8 and 10.8 g kg−1 in 2004, respectively. Temporal increases in the total amounts of carbon, which reflect the carbon sequestration potential of the soil followed the order: C1 + NK > C1 + NP = C1 + NPK > C1 + N = C1-control > C0 + NP = C0 + NK > C0 + NPK > C0-control > C0 + N. Fractions of H2O–C and K2SO4–C were higher in 1984, especially in those soil treated without compost. A reverse trend was observed in case of KMnO4–C and carbohydrate–C fractions. The continuous application of compost enhanced microbial biomass carbon as well as active microbial biomass carbon in 2004. Long-term application of chemical fertilizers in combination, rather than N alone, had beneficial effects on soil carbon and microbial pools. Compost application, even once a year, invariably led to higher increments in both soil carbon and microbial pools and the combinations of chemical fertilizers with compost generally showed comparable effects in the long-term.  相似文献   
20.
The sol–gel or viscous-elastic transitions of the bio-based polyamide 410/POE-g-MA (polyethylene-co-octene copolymer grafted with maleic anhydride) blends have been systematically discussed in the framework of melt rheology as assessed on a parallel plate rheometer set-up in small amplitude oscillatory shear mode and solid state dynamic mechanical relaxation measurements. The viscous response dominated enhancement in elastic moduli of the blends that was characterized by the phase transitions across the composition range of 10–15 wt% of POE-g-MA. A direct correlation between the gel point (estimated from the cross-over of frequency-independent loss tangent curves) and the ultra-toughness (maximized to an extent of ~15-fold increase in notched Izod impact strength) could be established vis-a-vis its corroboration from the morphology of the impact-failed surfaces. The extent of maleic anhydride (−MA) content induced phase interaction with polyamide 410 via the formation of a polyamide-co-(polyoctene-co-ethylene) type copolymer linkage in solid-state and its subsequent impact on solid-state damping was analyzed. The study establishes qualitative correlation between ultra-toughening of polyamide 410 to that parameters based on relaxation dynamics measurements using melt rheology and solid-state dynamic responses conforming to the principles of gelation rheology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号