首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学工业   18篇
金属工艺   3篇
机械仪表   4篇
建筑科学   2篇
能源动力   1篇
无线电   1篇
一般工业技术   16篇
冶金工业   1篇
自动化技术   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2012年   1篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
41.
The dry three‐body abrasive wear behavior of bi‐directional glass fabric reinforced epoxy composites with and without cenosphere filler have been studied using dry sand/rubber wheel abrasion tester. The angular silica sand particle sizes in the range 200–250 μm were used as dry and loose abrasives. The wear experiments have been conducted at two different loads viz., 22 and 32 N and different abrading distances viz. 270, 540, 810, and 1,080 m. The wear volume increases with an increase in load/abrading distance for all composites. From the experimental wear data it was observed that the abrasive wear of the composites dependent on the applied load and abrading distance. Further, the cenospheres filler inclusion in glass fiber reinforced epoxy (G‐E) composite showed poor abrasive wear performance. Scanning electron microscopy was used to study the morphology of the worn surface features of composites and to understand the mechanisms involved in the wear analysis. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
42.
The mechanical and three-body abrasive wear behaviour of two- and three-dimensional E-glass woven fabric reinforced vinyl ester composites were studied in this article. The mechanical properties were evaluated using universal testing machine as per ASTM D-638. Three-body abrasive wear tests were conducted using rubber wheel abrasion tester (RWAT) under different abrading distances at two loads, wherein the wear volume loss were found to increase and that of specific wear rate decrease. The results indicate that the three-dimensional glass woven fabrics in vinyl ester (G3D–V) have significant influence on wear under varied abrading distance/loads. Further, it was found that G3D–V composite exhibited lower wear rate compared to two-dimensional glass woven fabric reinforced vinyl ester (G2D–V) composite. The worn surface features, as examined through scanning electron microscope (SEM), show ruptured glass fiber in G2D–V composite compared to G3D–V composites.  相似文献   
43.
Ti2AlCx ceramic was produced by reactive hot pressing (RHP) of Ti:Al:C powder mixtures with a molar ratio of 2:1:1–.5 at 10–20 MPa, 1200–1300°C for 60 min. X-ray diffraction analysis confirmed the Ti2AlC with TiC, Ti3Al as minor phases in samples produced at 10–20 MPa, 1200°C. The samples RHPed at 10 MPa, 1300°C exhibited ≥95 vol.% Ti2AlC with TiC as a minor phase. The density of samples increased from 3.69 to 4.04 g/cm3 at 10 MPa, 1200°C, whereas an increase of pressure to 20 MPa resulted from 3.84 to 4.07 g/cm3 (2:1:1 to 2:1:.5). The samples made at 10 MPa, 1300°C exhibited a density from 3.95 to 4.07 g/cm3. Reaction and densification were studied for 2Ti–Al–.67C composition at 10 MPa, 700–1300°C for 5 min showed the formation of Ti–Al intermetallic and TiC phases up to 900°C with Ti, Al, and carbon. The appearance of the Ti2AlC phase was ≥1000°C; further, as the temperature increased, Ti2AlC peak intensity was raised, and other phase intensities were reduced. The sample made at 700°C showed a density of 2.87 g/cm3, whereas at 1300°C it exhibited 3.98 g/cm3; further, soaking for 60 min resulted in a density of 4.07 g/cm3. Microhardness and flexural strength of Ti2AlC0.8 sample were 5.81 ± .21 GPa and 445 ± 35 MPa.  相似文献   
44.
The article summarizes an experimental study on the abrasive wear behavior of particulate filled glass‐epoxy (G‐E) composites. The two fillers investigated were graphite and alumina. The wear behavior was assessed by rubber wheel abrasion tests. The tests were carried out for 270, 540, 810, and 1080 m abrading distances at 22 and 32 N loads. The worn surfaces were examined using scanning electron microscopy (SEM). The results showed varied responses under different abrading distance because of the addition of fillers in G‐E composites. Graphite filler, however, performed poorly resulting in significant deterioration in wear performance while the alumina filled G‐E composite showed improved abrasion resistance. Selected mechanical properties such as hardness, tensile strength, and elongation at fracture were analyzed for investigating wear property correlations. The SEM studies indicate the reasons for failure of composites and influencing parameters. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   
45.
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined.The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.  相似文献   
46.
Flocculation of kaolin from aqueous streams has become very important in view of its wide range of applications. In this work, cationic flocculants based on copolymers of acrylamide (AM) and 3-acrylamidopropyltrimethylammonium chloride (APTMAC) were synthesized with two different mole ratios of monomers, 80 mol % of AM (CP-8020) and 40 mol % of AM (CP-4060). The chemical structures of copolymers were confirmed by 1H and carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy. The molecular weight (MW) and zeta potential of the copolymers were determined. High MW was obtained for copolymer with high content of AM (CP-8020) and high zeta potential was observed for copolymer with high content of APTMAC (CP-4060). Flocculation of kaolin suspension was performed using both CP-8020 and CP-4060 and the flocculation was correlated to the zeta potential and MW of the copolymers. The optimum dosages of flocculants were determined. The mechanism of flocculation was discussed in terms of charge neutralization and bridging. The flocs of kaolin were characterized in terms of moisture content and size. To the best of our knowledge, this copolymer system was used for the first time for kaolin flocculation and found out to be efficient. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47286.  相似文献   
47.
Cellulose has received much attention as a emerging smart material, named as electro-active paper (EAPap), which can produce a large bending displacement with applied external electrical field. In spite of many advantages over other reported electro active polymers, there are some issues to be addressed: its actuator performance: (i) sensitive to environmental humidity, (ii) humidity dependent displacement output of the actuator and (iii) degradation of performance with time. In present paper, we have successfully developed the highly durable EAPap actuator working at ambient condition with large displacement output. To improve the performance and durability of EAPap, nanoscaled PPy layer into cellulose EAPap was formed by in-situ polymerization technique. Cellulose-PPy-IL nanocomposite based EAPap actuator showed nearly 100% improvement of the actuator performance compared that of pure cellulose based EAPap actuator systems.  相似文献   
48.
The present article summarizes an experimental study on three‐body abrasive wear behavior of glass fabric reinforced/graphite particulate‐filled epoxy composites. The wear behavior was assessed by rubber wheel abrasion tests (RWAT). The angular silica sand particle sizes in the range 200–250 μm were used as dry and loose abrasives. The tests were carried out for 270, 540, 810, and 1,080 m abrading distances at 22 and 32 N loads. The worn surfaces were examined using scanning electron microscopy (SEM). The results showed varied responses under different abrading distance due to the addition of glass fabric/graphite filler into neat epoxy. It was observed that the glass fabric reinforcement to epoxy matrix (G‐E) is not beneficial to abrasive wear resistance. Further, inclusion of graphite filler to glass fabric reinforced epoxy composite performed poorly resulting in significant deterioration in wear performance while the neat epoxy showed better wear performance. Selected mechanical properties such as hardness, ultimate tensile strength, and elongation at fracture were analyzed for investigating wear property correlations. The worn surface features were studied using SEM to give insight into the wear mechanisms. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
49.
Fiber/filler reinforced polymer composites are known to possess high strength and attractive wear resistance in dry sliding conditions. How these composites perform in abrasive wear situations needs a proper understanding. Hence, in this research article the mechanical and three‐body abrasive wear behaviour of E‐glass fabric reinforced epoxy (G‐E) and silicon carbide filled E‐glass fabric reinforced epoxy (SiC‐G‐E) composites are investigated. The mechanical properties were evaluated using Universal testing machine. Three‐body abrasive wear tests are conducted using rubber wheel abrasion tester wherein two different loads and four varying abrading distances are employed. The results showed that the wear volume loss is increased with increase in abrading distance and the specific wear rate decreased with increase in abrading distance/load. However, the presence of SiC particulate fillers in the G‐E composites showed a promising trend. The worn surface features, when examined through scanning electron microscopy, show higher levels of broken glass fiber in G‐E system compared to SiC‐ filled G‐E composites. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号