首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   21篇
电工技术   2篇
化学工业   113篇
金属工艺   1篇
机械仪表   3篇
建筑科学   11篇
矿业工程   1篇
能源动力   4篇
轻工业   38篇
水利工程   5篇
石油天然气   2篇
无线电   10篇
一般工业技术   49篇
冶金工业   19篇
自动化技术   22篇
  2024年   1篇
  2023年   4篇
  2022年   29篇
  2021年   17篇
  2020年   10篇
  2019年   9篇
  2018年   4篇
  2017年   9篇
  2016年   13篇
  2015年   14篇
  2014年   13篇
  2013年   22篇
  2012年   12篇
  2011年   14篇
  2010年   13篇
  2009年   11篇
  2008年   14篇
  2007年   12篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   2篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有280条查询结果,搜索用时 0 毫秒
101.
102.
103.
A wide variety of oxygen free radicals and other reactive oxygen species can be formed in the human body and in food systems. Transition metal ions accelerate free‐radical damage. Antioxidant defenses, both enzymic and nonenzymic, protect the body against oxidative damage, but they are not 100% efficient, and so free‐radical damage must be constantly repaired. Nonenzymatic antioxidants are frequently added to foods to prevent lipid peroxidation. Several lipid antioxidants can exert prooxidant effects toward other molecules under certain circumstances, and so antioxidants for food and therapeutic use must be characterized carefully. Methods of measuring oxidative damage and trapping free radicals in vivo are briefly discussed. Such methods are essential in checking proposals that increased intake of food‐derived antioxidants (such as antioxidant vitamins) would be beneficial to humans.  相似文献   
104.
The microbial stability of dry sausages is determined by the combination and timing of different factors referred to as the hurdle-concept. However, the hurdles present in dry sausage are not sufficient to prevent the survival of Listeria monocytogenes or enterohemorrhagic Escherichia coli O157:H7. Recently bioprotective lactic acid bacteria, which in addition to the production of antimicrobial lactic acid, have been found to contribute to the safety of the dry sausage by producing antimicrobial peptide, i.e. bacteriocins and other low-molecular-mass compounds. Furthermore, the possibilities to use probotics in dry sausage manufacturing process has been addressed recently. As one possible mode of action for probiotics is the production of antimicrobial compounds, lactic acid bacteria may act as both probiotic and bioprotective culture as well as fermenting agent in meat product, such as dry sausage.  相似文献   
105.
The sirtuin 1 (SIRT1) activator resveratrol has emerged as a promising candidate for the prevention of vascular oxidative stress, which is a trigger for endothelial dysfunction. However, its clinical use is limited by low oral bioavailability. In this work, we have applied a previously developed computational protocol to identify the most promising derivatives from our in-house chemical library of resveratrol derivatives. The most promising compounds in terms of SIRT1 activation and oral bioavailability, predicted in silico, were evaluated for their ability to activate the isolated SIRT1 enzyme. Then, we assessed the antioxidant effects of the most effective derivative, compound 3d, in human umbilical vein endothelial cells (HUVECs) injured with H2O2 100 µM. The SIRT1 activator 3d significantly preserved cell viability and prevented an intracellular reactive oxygen species increase in HUVECs exposed to the oxidative stimulus. Such effects were partially reduced in the presence of a sirtuin inhibitor, sirtinol, confirming the potential role of sirtuins in the activity of resveratrol and its derivatives. Although 3d appeared less effective than resveratrol in activating the isolated enzyme, the effects exhibited by both compounds in HUVECs were almost superimposable, suggesting a higher ability of 3d to cross cell membranes and activate the intracellular target SIRT1.  相似文献   
106.
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.  相似文献   
107.
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.  相似文献   
108.
Immunosuppressants and biologicals are widely used therapeutics for various chronic inflammatory diseases (CID). To gain more detailed insight into their downstream effects, we examined their impact on serum immunoglobulin G (IgG) glycosylation. We analyzed IgG subclass-specific fragment crystallizable (Fc) N-glycosylation in patients suffering from various CID using the LC-MS approach. Firstly, we compared IgG Fc N-glycosylation between 128 CID patients and 204 healthy controls. Our results replicated previously observed CID-related decrease in IgG Fc galactosylation (adjusted p-value range 1.70 × 10−2–5.95 × 10−22) and sialylation (adjusted p-value range 1.85 × 10−2–1.71 × 10−18). Secondly, to assess changes in IgG Fc N-glycosylation associated with therapy and remission status, we compared 139 CID patients receiving either azathioprine, infliximab, or vedolizumab therapy. We observed an increase in IgG Fc galactosylation (adjusted p-value range 1.98 × 10−2–1.30 × 10−15) and sialylation (adjusted p-value range 3.28 × 10−6–4.34 × 10−18) during the treatment. Furthermore, patients who reached remission displayed increased Fc galactosylation levels (p-value range 2.25 × 10−2–5.44 × 10−3) in comparison to patients with active disease. In conclusion, the alterations in IgG Fc glycosylation and the fact these changes are even more pronounced in patients who achieved remission, suggest modulation of IgG inflammatory potential associated with CID therapy.  相似文献   
109.
Changes in mitochondrial function were studied in perfused liver from rats aged 24-365 days. Oxygen consumption together with the rates of gluconeogenesis, urea synthesis and ketogenesis were determined. Basal mitochondrial respiration as well as the ability of the liver to synthesize glucose, urea and ketone bodies declined from 24- to 365-day-old rats. On the other hand, on transition from 24 to 60 days the liver oxidation rate of hexanoate, sorbitol and glycerol is enhanced, but not of ketone bodies or palmitate. Our results show that the transition from weaning to middle age is accompanied by defined changes in hepatic substrate oxidation. From the observed time course of the decrease in basal and substrate-stimulated oxygen consumption, it is concluded that in rat liver cells a decline in respiratory chain function, long-chain fatty acid and ketone body metabolism, gluconeogenesis and ureogenesis occurs at a relatively early life stage.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号