首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   27篇
  国内免费   2篇
电工技术   5篇
化学工业   153篇
金属工艺   5篇
机械仪表   7篇
建筑科学   5篇
能源动力   31篇
轻工业   36篇
水利工程   7篇
石油天然气   1篇
无线电   55篇
一般工业技术   126篇
冶金工业   31篇
原子能技术   7篇
自动化技术   75篇
  2023年   6篇
  2022年   17篇
  2021年   24篇
  2020年   27篇
  2019年   31篇
  2018年   19篇
  2017年   24篇
  2016年   27篇
  2015年   20篇
  2014年   32篇
  2013年   31篇
  2012年   32篇
  2011年   26篇
  2010年   17篇
  2009年   14篇
  2008年   12篇
  2007年   11篇
  2006年   18篇
  2005年   10篇
  2004年   12篇
  2003年   4篇
  2002年   12篇
  2000年   3篇
  1999年   6篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
排序方式: 共有544条查询结果,搜索用时 93 毫秒
71.
Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.  相似文献   
72.
73.
A method for producing buta-1,3-diene (1,3-BD) by an amalgamation of chemical and biological approaches with syngas as the carbon source is proposed. Syngas is converted to the central intermediate, acetyl-CoA, by microorganisms through a tetrahydrofolate metabolism pathway. Acetyl-CoA is subsequently converted to malonyl-CoA using a carbonyl donor in the presence of a carboxylase enzyme. A decarboxylative Claisen condensation of malonyl-CoA and acetaldehyde ensues in the presence of acyltransferases to form 3-hydroxybutyryl-CoA, which is subsequently reduced by aldehyde reductase to give butane-1,3-diol (1,3-BDO). An ensuing dehydration step converts 1,3-BDO to 1,3-BD in the presence of a chemical dehydrating reagent.  相似文献   
74.
The greatest challenge for a feasible hydrogen economy lies on the production of pure hydrogen and the materials for its storage with controlled release at ambient conditions. Hydrogen with its great abundance, high energy density and clean exhaust is a promising candidate to meet the current global challenges of fossil fuel depletion and green house gases emissions. Extensive research on hollow glass microspheres (HGMs) for hydrogen storage is being carried out world‐wide, but the right material for hydrogen storage is yet underway. But many other characteristics, such as the poor thermal conductivity etc. of the HGMs, restrict the hydrogen storage capacity. In this work, we have attempted to increase the thermal conductivity of HGMs by ZnO doping. The HGMs with Zn weight percentage from 0 to 10 were prepared by flame spheroidization of amber‐colored glass powder impregnated with the required amount of zinc acetate. The prepared HGMs samples were characterized using field emission‐scanning electron microscope (FE‐SEM), environmental SEM (ESEM), high‐resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy and X‐ray diffraction (XRD) techniques. The deposition of ZnO on the microsphere walls was observed using FE‐SEM, ESEM and HRTEM which was further confirmed using the XRD and ultraviolet–visible absorption data. The hydrogen storage studies done on these samples at 200 °C and 10‐bar pressure for 5 h showed that the hydrogen storage increased when the Zn percentage in the sample increased from 0 to 2%. The percentage of zinc beyond 2, in the microspheres, showed a decline in the hydrogen storage capacity. The closure of the nanopores due to the ZnO nanocrystal deposition on the microsphere surface reduced the hydrogen storage capacity. The hydrogen storage capacity of HAZn2 was found 3.26 wt% for 10‐bar pressure at 200 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
75.
76.
77.
The outcome of a print in production run plays a crucial role in commercial and packaging printing. In the growing packaging industry, colorfulness and saturated prints with high chroma attract the eye of the consumer. The design and layout of a packaging carton comprise of images that consist of halftones in the print process, which demand attractiveness and visibility using bright colors. In this research, an effort has been made to identify and analyze various parameters involved in offset lithography affecting color attributes of prints. This study also focused on the investigation of the best process conditions that would yield optimum color values through multiresponse factors such as chroma and lightness. A general full-factorial Design of Experiments (DOE) approach was used to evaluate the effect of prepress parameters such as screen ruling and dot shape and press parameters such ink viscosity and paper smoothness. These parameters were then optimized using a customized response surface design. From the experiment, it was observed that viscosity of the ink was a significant factor that majorly controls the color attributes. The surface smoothness of the paperboard was one of the factors influencing the improvement of color reproduction. A smoother surface makes even contact during ink transfer in the offset printing machine and hence reflects color with a higher chroma. The optimum parameters were as follows: 15 Pa s ink viscosity, 0.77 μm paper smoothness, and 200 lines per inch (lpi) screen ruling that resulted in increasing chroma (C*) in the middle and shadow tones in the halftones.  相似文献   
78.
Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.  相似文献   
79.
Microsystem Technologies - Pristine metallic single-walled carbon nanotubes (6, 0), surface engineered with pyrimidine type DNA nucleobases, thymine and cytosine respectively, are transformed into...  相似文献   
80.
Mimicking the skin's non‐linear self‐limiting mechanical characteristics is of great interest. Skin is soft at low strain but becomes stiff at high strain and thereby can protect human tissues and organs from high mechanical loads. Herein, the design of a skin‐inspired substrate is reported based on a spaghetti‐like multi‐nanofiber network (SMNN) of elastic polyurethane (PU) nanofibers (NFs) sandwiched between stiff poly(vinyldenefluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) NFs layers embedded in polydimethylsiloxane elastomer. The elastic moduli of the stretchable skin‐inspired substrate can be tuned in a range that matches well with the mechanical properties of skins by adjusting the loading ratios of the two NFs. Confocal imaging under stretching indicates that PU NFs help maintain the stretchability while adding stiff P(VDF‐TrFE) NFs to control the self‐limiting characteristics. Interestingly, the Au layer on the substrate indicates a negligible change in the resistance under cyclic (up to 7000 cycles at 35% strain) and dynamic stretching (up to 35% strain), which indicates the effective absorption of stress by the SMNN. A stretchable chemoresistive gas sensor on the skin‐inspired substrate also demonstrates a reasonable stability in NO2 sensing response under strain up to 30%. The skin‐inspired substrate with SMNN provides a step toward ultrathin stretchable electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号