首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84179篇
  免费   953篇
  国内免费   402篇
电工技术   774篇
综合类   2317篇
化学工业   11541篇
金属工艺   4788篇
机械仪表   3021篇
建筑科学   2172篇
矿业工程   567篇
能源动力   1119篇
轻工业   3736篇
水利工程   1270篇
石油天然气   344篇
无线电   9260篇
一般工业技术   16323篇
冶金工业   2674篇
原子能技术   258篇
自动化技术   25370篇
  2022年   14篇
  2021年   32篇
  2020年   14篇
  2019年   16篇
  2018年   14457篇
  2017年   13388篇
  2016年   9971篇
  2015年   612篇
  2014年   234篇
  2013年   223篇
  2012年   3181篇
  2011年   9431篇
  2010年   8307篇
  2009年   5573篇
  2008年   6789篇
  2007年   7804篇
  2006年   140篇
  2005年   1220篇
  2004年   1150篇
  2003年   1188篇
  2002年   554篇
  2001年   103篇
  2000年   186篇
  1999年   60篇
  1998年   54篇
  1997年   32篇
  1996年   55篇
  1995年   16篇
  1994年   25篇
  1993年   13篇
  1992年   20篇
  1991年   28篇
  1988年   9篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
  1949年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The transient flow in pump-turbines during the load rejection process is very complex. However, few studies have been conducted on three-dimensional (3-D) numerical simulation. Hence, we simulated 3-D transient turbulent flow in a pump-turbine during the load rejection process using the calculation method of coupling the flow with the rotor motion of rigid body. To simulate the unsteady boundary conditions, the dynamic closing process of the guide vanes was simulated with the dynamic mesh technology. The boundary conditions at the spiral-casing inlet and the draft tube outlet were determined using the user defined functions (UDF) according to the experimental data. The numerical results of the rotational speeds show a good agreement with the experimental data. Then, the complex transient flow in the pump-turbine during the load rejection process was analyzed based on the numerical results. The results show that there are severe unsteady vortex flows in the vaneless space near the conditions under which the hydraulic torque on the runner equals to zero. When the pump-turbine operates into the maximum reverse discharge condition in the reverse pump operating process, the unsteady vortex flows in the vaneless space are instantaneously impacted into the region between the guide vanes and the stay vanes by the sudden reverse flows. The formation and development mechanism of the unsteady vortex flow in the vaneless space is associated with the distribution characteristic of the velocity field.  相似文献   
992.
The purpose of this study is the analysis of flow around a one-bladed Darrieus-type wind turbine using computational fluid dynamics (CFD). The rotor geometry consists of a NACA 0015 airfoil with chord length of 0.15 m. Numerical simulations are performed using ANSYS Fluent, employing laminar model and two turbulence models: SST k-ω and RNG k-ε. The obtained numerical results of unsteady aerodynamic blade loads are compared with available experimental results from literature. Computed aerodynamic characteristics of normal and tangential forces comply with the experiment results. The RNG k-ε turbulence model has a good accuracy in determining aerodynamic blade loads for the upwind and downwind parts of the rotor. The laminar model and the SST k-ω turbulence model slightly overestimate the tangential aerodynamic blade loads at the downwind part of the rotor. An averaged wind turbine velocity profile computed at one rotor radius downstream of the rotor has a Gaussian shape. The steady-state airfoil characteristics are computed for the Reynolds number comparable to the Reynolds number of a moving blade employing the SST k-ω and RNG k-ε turbulence models and using the same computational grid as for unsteady simulations of the rotor.  相似文献   
993.
This study attributed to post treatment of tungsten carbide (WC) inserts using microwave irradiation. Tungsten carbide inserts were subjected to microwave radiation (2.45 GHz) to enhance its performance in terms of reduction in tool wear rate, cutting force surface roughness and improvement in tool life. Performance of tungsten carbide insert is very much affected by machine operating parameters i.e. speed, feed and depth of cut. An attempt has been made to investigate the effects of machining parameters on microwave treated tool inserts. This paper describes the comparative study of machining performance of untreated and microwave treated WC tool inserts used for turning of AISI 1040 steel. Machining performance has been evaluated in terms of flank wear, cutting force, surface roughness, tool wear mechanisms. Critical examinations of tool wear mechanisms and improvements in metallurgical properties such as microstructural change, phase activation of WC grains were identified using scanning electron microscope (SEM). Results obtained from the turning using the microwave treated tool inserts showed a significant reduction tool wear thereby enhancing the surface quality of workpiece.  相似文献   
994.
The demand for better structural performance in joining of components for road vehicles prompts the implementation of aluminum alloy friction stir welding technology in the automotive industry. The aim of current study is the creation of a 3-D finite element (FE) friction thermal model and stir welding (FSW) process of dissimilar aluminum alloy and for the estimation of crash worthiness performance of FSW fabricated shock absorber assembly. Thermo mechanical simulations and analysis are performed to understand the thermal behavior in the FSW weld zones. The developed models are correlated against published experimental results in terms of temperature profile of the weld zone. The developed models are then implemented for fabricating vehicle bumper parts to illustrate the performance of FSW welded components during an impact. Customary sled testing for low-speed guard necessities is performed utilizing a grating blend welded test apparatus at Wichita State University (WSU) at the National Institute for Aviation Research (NIAR). A few guard congregations are then appended to the test installation utilizing FSW and conventional Gas bend GMAW welding strategies. Numerical models are likewise created where limited component investigation is utilized to contrast the anticipated harm and the real harm maintained by both of the FSW and GMAW manufactured guards. During the research, a new FSW weld mold is created that allows for a better representation of the desired progressive crack propagation. The FSW fabricated bumper based on the Johnson-Cook failure model yields better failure prediction and is in good agreement to the test. The results from this study provide a guideline for an accurate finite element modeling of a FSW fabricated components and their application in the crashworthiness of such structural components.  相似文献   
995.
996.
We propose the quasi-zero-stiffness (QZS) vibration isolator as seat suspension to improve vehicle vibration isolation performance. The QZS vibration isolator is composed of vertical spring and two symmetric negative stiffness structures used as stiffness correctors. A vehicle-seat-human coupled model considering the QZS vibration isolator is established as a three degree-of-freedom (DOF) model; it is composed of a quarter car model and a simplified 1 DOF model combined vehicle seat and human body. This model considers the changing mass of the passengers and sets the total mass of the vehicle seat and human body as an uncertain parameter, which investigates the overload and unload conditions in practical engineering. To further improve the vehicle ride comfort, a constrained adaptive backstepping controller law based on the barrier Lyapunov function (BLF) is presented. The dynamic characteristic of the active vehicle-seathuman coupled model under shock excitation was analyzed using numerical method. The results show that the designed controller law can isolate the shock excitation transmitted from the road to the passengers effectively, and both the vehicle and seat suspension strokes remain in the allowed stroke range.  相似文献   
997.
This paper proposes a vibration-based fault-diagnosis method for mechanical parts. This method, after algorithm development, only requires a single inexpensive test to inspect the part which could take as short as half a second. The algorithm is developed in three major stages, (i) exciting specimens without or with known faults using a controlled force and recording acceleration of a single point for a short time (ii) finding a signature for each faulty specimen, using Fourier transform and statistical analysis. (iii) Developing a multi-layer perceptron, as a mathematical model, using the results of stage (ii). The elements of a part signature are the inputs to the model. The location (and possibly size and shape factor) of the fault is model output. Stage (i) can be performed experimentally or alternatively with a validated FEM, one experiment or simulation per specimen. The proposed technique was examined to locate (isolate) a fault on an automobile cylinder head. The presented accuracy is considerable, and the data collected at fairly low frequency range (below 1200 Hz) were found to be sufficient for this technique. In the case study of this paper, possible fault locations are on a line; as a result, fault location has one dimension. It is shown that the technique can be extended to higher dimensions.  相似文献   
998.
In the previous research, shaft torsional flexibility was only considered in the wind turbine drivetrain. However, if shaft is longer and thinner than other parts, two components which are connected by shaft affect each other by rotation about bending axis. It means that there are deflections of shaft about not only torsional direction but also bending direction. In this research, we introduced spherical joint which have 3 spring stiffness about all rotational axis to define shaft. And we analyzed that how shaft bending affect drivetrain rotation, translation motion and gear mesh contact force. To do these processes, we simulated the 3-dimensional wind turbine drive train model which has bearing stiffness, gear mesh stiffness, and shaft flexibility. The gear mesh stiffness was defined by Fourier series. And the equation of motion was acquired by Lagrange equation and kinematical constraints to represent shaft flexibility. About numerical analysis, the Newmark method was used to get results. Lastly, fast Fourier transform which converts results from time domain to frequency was used.  相似文献   
999.
The vibration properties of compound planetary gears are more complicated than that of simple ones. This paper aims to investigate the fault properties of a compound planetary gear set in chipped sun gear conditions using model-based method. A three-dimensional lumped-parameter nonlinear dynamic model for the compound planetary gear set is established. This model considers the time-varying mesh stiffness (TVMS), the mesh phase relations, and gear chipping defects. The analytical equations are derived to quantify the TVMS reduction induced by the chipped gear based on the improved potential energy method. Further, the simulations are performed to demonstrate the fault features of sun gears with single or multiple chipped teeth in different gear stages. Moreover, the theoretical derivations are validated through the experimental signals analysis.  相似文献   
1000.
The true stress-strain curve of a material should be determined for plastic property input to numerical analysis. This study proposes a simple methodology for determining the true stress-strain curve of SA-508 Grade 3 Class 1 low alloy steel using limited information from a general tensile test with finite element analysis. Measured engineering stresses and strains can be reasonably converted to true stresses and strains under uniform deformation before necking. True stress-strains are difficult to determine after necking because of nonuniform deformation without specialized measurement techniques. Five post-necking strain hardening models are considered, namely, linear, swift, Ludwick, Hollomon-linear (HL) and Hollomon-linear-constant (HLC) models. The equations for each model can be determined using the results of the tensile test, which include the true stress-strain value at the maximum load point and the corrected true stress-strain value at the fracture point plus the Considere instability criterion. The HL and HLC models suggested that the engineering stress-strains from the finite element analysis are consistent with the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号