The tribological performance of graphene oxide (GO), graphitic carbon nitride (g-C3N4), and their mixed (g-C3N4/GO) aqueous suspensions was investigated. The 0.06 wt% GO, 0.06 wt% g-C3N4, and 0.06 wt% 1:1 g-C3N4/GO suspensions reduced the coefficient of friction (COF) by 37, 26 and 37% and wear mark radius by 19.1, 16.0 and 19.6%, respectively, in comparison with water. Pure g-C3N4 and GO suspensions showed unstable lubrication in the tests with relatively high loads and speeds, while the g-C3N4/GO mixed suspension had superior tribological performance in all tested conditions. This is because in the mixed suspension g-C3N4 agglomerates became smaller, and GO nanosheets exhibited fewer wrinkles and less stacking, which enabled the formation of a layer of tribo-composite film. As a result, the friction, wear and tribo-corrosion were reduced during sliding. 相似文献
This paper studies the nonlinear behavior of the friction-induced vibration by using spring-mass model subject to the smooth frictionvelocity curve. The nonlinearity and instability of the friction may produce the chaotic vibration depending on the friction curve. In order to show this, the Lyapunov exponents are calculated for a variety of the slope and magnitude in the smooth friction curve. In turn, the dependency of the friction curve on the chaotic attractor is illustrated. 相似文献
The advent of smart factories has resulted in the frequent utilization of industrial robots within factories to increase production automation and efficiency. Due to the increase in the number of industrial robots, it has become more important to prevent any unexpected breakdowns of the factory. As a result, the lifespan prediction of machinery has become a crucial factor because such failures can be directly associated with factory productivity resulting in significant losses. Most of the failures occur within one of the core components of the robot arm, the servo motor, and thus we will focus on the analysis of the servo motor in this study. However, sensor attachment to such equipment is considered difficult due to the dynamic movement of the robot arm, meaning that internal instrumentation should be utilized during analysis. In addition, no definite measure to determine the degradation of the motor exists, and thus a new degradation index is proposed in this study. Therefore, in this study, the lifespan of the servo motor will be estimated through accelerated degradation testing methods based on a new system degradation assessment method, which estimates the fault of the system using observer-based residuals with encoder data obtained from internal instrumentation. 相似文献
Electricity generation through fossil fuels has caused environmental pollution. Accordingly, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels and solve this problem is in progress. These devices can consistently generate power. However, they have several drawbacks, such as high installation costs and limitations in possible set-up environments. Therefore, the piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. The piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Its advantages include a wider installation base and a lower technological cost. This study investigated a piezoelectric energy-harvesting device based on constant wave motion. This device can harvest power in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, percussion bar, triple layer piezoelectric bender, bearing and rudder. A multiphysical analysis coupled with the structure and piezoelectric elements was also conducted to estimate the device performance. The analysis accuracy was improved by applying the impact energy to the bender calculated based on the shape of the wave in the East Sea. The proposed device’s performance was finally confirmed by experiments. 相似文献
Data on the reactions and processes occurring under the conditions of the alkaline activation of carbon substances—the production of activated carbons by the thermolysis of carbon substances in the presence of alkali metal hydroxides MOH—are summarized. The following most important activation processes were recognized: (1) the interaction of functional groups with MOH and the formation of intermediate structures with the C-O-M group; (2) their conversion into metal-containing compounds (primarily, M2CO3 and M2O) in reactions with carbon, especially, with terminal C atoms on the periphery of graphenes; and (3) the reduction of M2CO3 and M2O to the metal M, which is intercalated into the interlayer spaces of crystallites. The mechanism of alkaline activation was studied in most detail for KOH as an activating agent. The thermally initiated reduction of potassium oxide with carbon and the intercalation of potassium metal are the two most important processes for the development of the microporosity of activated carbon. 相似文献
Bio-ethanol is well known for its use as a gasoline additive. However, it can be blended in low portions to traditional gasoline although it has a corrosive nature. By taking advantage of modern continuous reactor technology and heterogeneous alumina catalysts, ethanol can be upgraded to 1-butanol in fixed beds. Butanol has more feasible properties as fuel component in comparison to ethanol. Mathematical modeling of reaction kinetics revealed a simple kinetic model could be used to describe the complex reaction process on a Cu/alumina catalyst. The reaction kinetics model is based on five parallel reactions in which ethanol reacts to 1-butanol, acetealdehyde, ethyl acetate, diethyl ether and diethoxyethane, respectively.
Novel 3-hexylthiophene-based hyperbranched conjugated polymers containing triphenylamine and benzo [c] [1, 2, 5] thiadiazole moieties were synthesized by Suzuki coupling polymerization of tris (4-bromophenyl) amine, 2,2′-(3-hexylthiophene-2,5-diyl) bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) and 4,7-dibromobenzo [c] [1, 2, 5] thiadiazole. Organic solvent-soluble polymers with number-average molecular weights of 24,000 and 42,000 g/mol were obtained in 54–57 % yields. Their structures, molecular weights and thermal properties were characterized via proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopies, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle powder X-ray diffraction (XRD) measurements. Optical investigation by UV–vis and fluorescence spectroscopies revealed that the incorporation of the benzo [c] [1, 2, 5] thiadiazole moiety in the hyperbranched polymer structure resulted in a red-shift of the maximum absorption wavelength and an increase in the solution-photoluminescence quantum yield, indicating an extension of the conjugation length. The UV–vis, DSC and XRD results demonstrated that the aggregation of conjugated polymer chains could effectively be reduced by the hyperbranched structures and that conjugation length extension via the introduction of benzo [c] [1, 2, 5] thiadiazole units led to the coexistence of both crystalline and amorphous phases in the solid state and in solution upon addition of a non-solvent. 相似文献
This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda-lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda-lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He-Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by EDS analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg-peaks in XRD experiments. 相似文献
An efficient protocol for the direct sulfanylation of various 4‐hydroxycoumarins and 4‐hydroxyquinolinones in good yield with arylsulfonylhydrazides as sulfanylating agents was developed via copper(I) bromide⋅dimethyl sulfide‐catalyzed S–O, S–N bond cleavage and C–S cross‐coupling reactions. A highly selective fluorescence turning‐on sensing of cadmium(II) ions in water using the synthesized 3‐sulfanyl‐4‐hydroxycoumarin derivative was also investigated.