首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10733篇
  免费   1097篇
  国内免费   23篇
电工技术   126篇
综合类   19篇
化学工业   3031篇
金属工艺   427篇
机械仪表   654篇
建筑科学   165篇
矿业工程   2篇
能源动力   582篇
轻工业   824篇
水利工程   30篇
石油天然气   11篇
武器工业   3篇
无线电   1899篇
一般工业技术   2490篇
冶金工业   401篇
原子能技术   126篇
自动化技术   1063篇
  2024年   9篇
  2023年   121篇
  2022年   204篇
  2021年   324篇
  2020年   262篇
  2019年   327篇
  2018年   390篇
  2017年   400篇
  2016年   440篇
  2015年   414篇
  2014年   569篇
  2013年   734篇
  2012年   841篇
  2011年   961篇
  2010年   699篇
  2009年   707篇
  2008年   611篇
  2007年   445篇
  2006年   440篇
  2005年   363篇
  2004年   324篇
  2003年   354篇
  2002年   282篇
  2001年   215篇
  2000年   216篇
  1999年   221篇
  1998年   238篇
  1997年   125篇
  1996年   100篇
  1995年   76篇
  1994年   72篇
  1993年   52篇
  1992年   52篇
  1991年   36篇
  1990年   32篇
  1989年   36篇
  1988年   21篇
  1987年   24篇
  1986年   19篇
  1985年   14篇
  1984年   17篇
  1983年   16篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1978年   5篇
  1977年   8篇
  1976年   12篇
  1975年   3篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.  相似文献   
102.
It remains a challenge to maintain the antiadhesion properties of superhydrophobic films after exposure to bacterial environments. In this work, superhydrophobic bactericidal polymer films via the simple incorporation of polyvinylpyrrolidone-iodine (PVP-I) or iodine into polytetrafluoroethylene (PTFE) are fabricated to improve their antiadhesive and antibacterial capability. Superhydrophobic iodine-embedded films, polytetrafluoroethylene/polyvinylpyrrolidone-iodine and polytetrafluoroethylene-iodine (PTFE/PVP-I and PTFE-I), show excellent antiadhesive and bactericidal performances even post exposure to bacterial solutions as compared to iodine-free counterparts by controlling the release of iodine. Especially, superhydrophobic PTFE/PVP-I films display a more sustained iodine release profile and significant antibacterial properties against gram-positive (S. aureus, methicillin-resistant S. aureus (MRSA)) and gram-negative (E. coli) bacteria. Such a facile combination of antiseptic agents and superhydrophobic surface could be widely used for antiseptic biomedical applications.  相似文献   
103.
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.  相似文献   
104.
Cellulose nanocrystals (CNCs) incorporated with silver nanoparticles (AgNPs) photonic films have drawn considerable attention due to their plasmonic chiroptical activity. However, the exploitation of some fundamental properties for practical use such as the affinity analysis of metal nanoparticles attached to the surface of photonic films according to the solvent compatibility and antibacterial activity under physical conditions has yet not been studied. Hence, a facile process of in situ deposition of AgNPs into the chiral structure of CNC films is proposed. CNC photonic films, cross-linked by glutaraldehyde are prepared. This interaction generated the solvents-stable photonic film with a considerable amount of unreacted aldehyde functional groups that facilitates the reduction of Ag salt to AgNPs. The formed AgNPs in the photonic films show excellent stability over immersion in various polar and non-polar solvents. The post-solvent treated photonic films display excellent contact-based antibacterial behavior against gram-negative Escherichia coli.  相似文献   
105.
In an effort to develop highly functionalized flame retardant materials, hybrid nanocoatings are prepared by alternately depositing a positively charged polyaniline (PANi) and negatively charged montmorillonite (MMT) using the layer-by-layer (LbL) assembly technique. Carbon nanotubes (CNTs) are employed in polymer nanocomposites as effective reinforcement, where nanotubes are stabilized in MMT aqueous solution. The 3D structure and high density of CNTs deposited in the PANi/CNTs-MMT multilayers produce thicker and heavier coatings in comparison to the LbL assemblies without CNTs. Vertical and horizontal flame testing show that the incorporation of CNTs improves fire resistance. Additionally, cone calorimetry reveals that stacking two nanomaterials (MMT and CNTs) in a single coating shows a significant reduction in peak heat release rate (up to 51%), total smoke release (up to 47%), and total heat release (up to 37%) for the polyurethane foam. The enhancement of flame retardancy is attributed to a synergistic effect; MMT serves as a physical barrier that retards the diffusion of heat and gas. The addition of CNTs strengthens the thermal stability and high char yield. These results, coupled with the simplicity with which the LbL deposition is applied, present a viable alternative to halogen-free flame retardant nanocoatings to natural and synthetic fibers.  相似文献   
106.
Marine antifouling coating using functional polymers has emerged as an important tool to combat marine fouling. Owing to their natural abundance, polysaccharides represent a more sustainable option than synthetic polymers and carrageenan, a sulfated polysaccharide, is identified as a promising candidate for further research based on its excellent marine antifouling properties. However, existing research has only explored the application of carrageenan-based coatings for 2D objects, using techniques such as spin-coating. Here, a spray-coating method is proposed to apply carrageenan-based coatings to the surfaces of 2- and 3-D objects. The coated surfaces exhibit high stability under various chemical/physical stresses and high resistance to protein adsorption and marine diatom adhesion.  相似文献   
107.
Lightweight insulation refractories are essential for high-temperature performance to reduce energy consumption. This study investigates a new insulation material, that is, solid waste rice husk ash (RHA) derived lightweight refractory castable, replacing traditional insulation refractory brick. The RHA is generated after the burning of rice husk as biomass fuel. The RHA is used as an aggregate and alkali-extracted silica sol from RHA as a binder to fabricate the insulation castable. The nanosilica containing (~30 wt%) sol is employed to synthesize the refractory castable by varying the sol amount (2.5-12.5 wt% silica from sol). The castable specimens are cast by a vibro-caster and fired at 900-1200°C in a muffle furnace. The physic-mechanical and thermal conductivity (κ) of the castable is investigated. At 1100°C with 10 wt% dry sol retaining sample shows an excellent apparent porosity (~65%), low bulk density (~ 0.8 g/cm3), and κ (0.136 W/m k) with sustainable compressive strength (6 MPa). The acquired results are a good match with the literature (other wastes-derived insulation materials) and industrial (silica insulation brick) obtained data. These promising outcomes may inspire the refractory industries for using RHA as an aggregate and RHA extracted sol as a binder for making insulation castable.  相似文献   
108.
Biodegradable plastics were produced from sweet potato pulp (SPP) and cationic starch (CS) or chitosan composite (CC) by compression molding and their mechanical properties were tested. A universal testing machine, Rockwell hardness tester, and Izod impact tester were used for testing the mechanical properties (flexural strength, Rockwell hardness, and Izod strength) of the plastics. A central composite second‐order design was used to study the effects of temperature, time, and moisture content on the flexural strength, Rockwell hardness, and Izod strength of SPP/CS and SPP/CC blended plastics. The flexural strength, Rockwell hardness, and Izod strength of SPP‐based plastics was 101.1–305.9 kg/cm2, R29.0–R96.7, and 0.6–3.0 kg cm cm?2, respectively. Regression analysis predicted the optimal mechanical properties (flexural strength, Rockwell hardness, and Izod strength) to be attained with a 150–160°C temperature, 15–20‐min reaction time, and 20–23% moisture content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 423–434, 2002  相似文献   
109.
Baik  Joon Hyun  Yim  Sung Dae  Nam  In-Sik  Mok  Young Sun  Lee  Jong-Hwan  Cho  Byong K.  Oh  Se H. 《Topics in Catalysis》2004,30(1-4):37-41
Topics in Catalysis - Among the catalysts screened, Cu-ion exchanged ZSM5 zeolite exhibited the highest NO removal activity, particularly at low reaction temperatures below 200 °C,...  相似文献   
110.
Atomic force microscopy (AFM) has been used to study the morphology and microstructure of an amine-cured epoxy before and after outdoor exposure. Measurements were made from samples prepared in an essentially CO2-free, H2O-free glove box and from samples prepared in ambient conditions. For those prepared in a CO2-free glove box, AFM imaging was conducted on (1) an unexposed air/coating surface, (2) an unexposed coating bulk, (3) an unexposed coating/substrate interface, and (4) a field exposed air/coating surface. For samples prepared in ambient conditions, only the unexposed air/coating surface was investigated. The same regions of the exposed samples were scanned periodically by the AFM to monitor changes in the surface morphology of the coating as UV exposure progressed. Small angle neutron scattering and Fourier transform infrared spectroscopy (FTIR) studies were performed to verify the microstructure and to follow chemical changes during outdoor exposure, respectively. The results have shown that amine blushing, which occurs only under ambient conditions, had a significant effect on the surface morphology and microstructure of the epoxy. The surface morphology of the samples prepared under CO2-free, dry conditions was generally smooth and homogeneous. However, the interface and the bulk samples clearly revealed a two-phase structure consisting of bright nodular domains and dark interstitial regions, indicating an inhomogeneous microstructure. Such heterogeneous structure of the bulk was in good agreement with results obtained by small angle neutron scattering of unexposed samples and by AFM phase imaging of the degraded sample surface. The relationship between submicrometer physical changes and molecular chemical degradation is discussed. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004, in Chicago, IL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号