Propane (R290), a hydrocarbon refrigerant, is an excellent choice of cooling fluids for use in refrigeration and air conditioning systems considering the environmental point of view and system performance. The phase transition phenomenon and structural and dynamic properties of R290 were analyzed through a molecular dynamics (MD) simulation. The densities, isobaric heat capacities and viscosities were computed and the variations of density, volume, potential energy and the nucleation process were examined to investigate the effects of condensation temperature on the phase transition rate. The mean square displacement and velocity autocorrelation function for different temperatures were simulated for dynamical analysis. Radial distribution functions were investigated to get insight into the structural analysis at the atomic level. Shear viscosity and isobaric heat capacity obtained by the present simulation showed a good agreement with the REFPROP data. The structural analysis revealed that the phase transition of R290 did not affect its intramolecular structure.
Journal of Mechanical Science and Technology - The threaded fasteners are typical machine components in tightening of the machine parts and structures. In addition, as threaded fasteners are easy... 相似文献
A series of experiments is carried out by using a rolling type tribometer to investigate the lubricity of the volatile lubricants at high speed forming. The roll material is the die steel alloy SKD11, and the workpiece material is the mild steel SPCE with a rough surface and the aluminum alloy A3004 with a smooth surface. Experimental results show that the friction coefficient decreases with increasing working velocity for both SPCE and A3004, in any lubricant. With an increase of reduction in thickness, the friction coefficient decreases for SPCE, but increases for A3004. Some volatile lubricants have the same lubricity as the generally used mineral oil with low-viscosity by judging from the value of friction coefficient, the surface appearance of rolled workpiece and the roll surface damage. 相似文献
Nano Research - Iron-based nanoparticles with uniform and high particle dispersion, which are supported on carbon structures, have been used for various applications. However, their preparation... 相似文献
Nano Research - The toxicity of nanoparticles in a biological system is an integration of effects arising from surface functionality, particle size, ionic dissolution, etc. This complexity suggests... 相似文献
In a fin-tube heat exchanger the contact between fin collar and tube surface is obtained through mechanical expansion of tubes. Since the interfaces between the tubes and fins consist partially of metal-to-metal contact and partially of air, the features of heat transfer through the contact interfaces have not been fully investigated. The present study aims at the development of a new tool including an experiment and a numerical calculation for the estimation of the thermal contact conductance between the fin collar and tube surface, and pursues the evaluation of the factors affecting the thermal contact conductance in a fin-tube heat exchanger. Heat exchangers fabricated for the current study have been put to the test for heat balance in a vacuum chamber with water as an internal fluid. And a finite difference numerical scheme has been used for the data reduction of the experimental data to evaluate the thermal contact conductance. Fin-tube heat exchangers employed in the current research are of tube diameter of 7 mm with different tube expansion ratios, fin spacings, and fin types. The results of the present study imply that these parameters as well as hydrophilic fin coating have a significant effect on the thermal contact conductance. It has been discovered that the portion of the thermal contact resistance is not negligible compared with the total thermal resistance in a fin-tube heat exchanger, and this means that in order to reduce the thermal contact resistance thoughtful care should be taken in fabricating heat exchangers. 相似文献
Mackinawite, an iron monosulfide, has been shown to be a potential reductant for chlorinated organic compounds under anaerobic conditions. Chlorinated organic compounds are often found with inorganic contaminants. This study investigates the impact of various transition metals on the reductive dechlorination by mackinawite using a readily degradable chlorinated organic compound, hexachloroethane (HCA). Different classes of transition metals show distinct patterns in their impact on the HCA dechlorination: 10(-3) M Cr(III) and Mn(II) (hard metals) decreased the dechlorination rates, while 10(-4), 10(-3), and 10(-2) M Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) (intermediate/soft metals) increased the rates. The tested hard metals, due to their weak affinity for sulfides, are thought to form surface precipitates of hydroxides around FeS under the experimental conditions with these hydroxides hindering the electron transfer between FeS and HCA. Due to their high affinity for sulfides, however, the tested intermediate/soft metals can react with FeS in various ways: precipitation of pure metal sulfides (MS), formation of metal-substituted FeS by lattice exchange, and coprecipitation of the mixed sulfides in a Fe-M-S system. Fe(II), released as a result of the interaction of FeS with intermediate/soft metals, enhances the HCA dechlorination at the doses of 10(-4) and 10(-3) M through sorbed or dissolved Fe(II) species, while Fe(OH)2(s) formed at the higher dose of 10(-2) M also enhances the reductive dechlorination. Rate increases observed in Co(II)-, Ni(II)-, and Hg(II)-amended systems are not simply explained by the formation of pure MS; instead, metal-substituted FeS or coprecipitated sulfides are thought to be responsible for the significantly increased rates observed in these systems. 相似文献
Wire ball open failure at the interface of the gold wire and bonding pad of a multi-stack package (MSP) under high temperature storage (HTS) condition of 150 °C is studied. Failure analysis using FIB-SEM was conducted by in-plane moiré interferometry and FEA to clarify the failure mechanism. The ball open failure due to Kirkendall void that results from metal diffusion at high temperature was accelerated by the tensile stress imposed at the gold wire. The tensile stress developed at the gold wire when packages showing different warpage behaviours were stacked. Mechanical interaction between top and bottom packages caused unstable warpage, readily twisted and saddled. The wire came in contact with the photo-sensitive solder resist (PSR) dam because of the unstable warpage and this contact resulted in tensile stress at the gold wires. Solder flux residues reacted with the encapsulant, and as a result, the encapsulant of the top package adhered to the chip of the bottom package, and this adherence created additional tensile stress at the gold wires. To reduce the tensile stress at the wires, the PSR dam was removed, loop shape was altered from 45° to 90°, water soluble flux was applied, and cleaning process was added. HTS reliability was significantly improved and guaranteed after reducing the tensile stress at the wires. 相似文献