首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1285篇
  免费   56篇
  国内免费   6篇
电工技术   72篇
综合类   1篇
化学工业   371篇
金属工艺   29篇
机械仪表   23篇
建筑科学   27篇
能源动力   78篇
轻工业   168篇
水利工程   1篇
无线电   104篇
一般工业技术   230篇
冶金工业   56篇
原子能技术   53篇
自动化技术   134篇
  2024年   2篇
  2023年   9篇
  2022年   29篇
  2021年   43篇
  2020年   18篇
  2019年   23篇
  2018年   35篇
  2017年   26篇
  2016年   59篇
  2015年   37篇
  2014年   57篇
  2013年   94篇
  2012年   74篇
  2011年   105篇
  2010年   84篇
  2009年   84篇
  2008年   82篇
  2007年   61篇
  2006年   40篇
  2005年   44篇
  2004年   59篇
  2003年   45篇
  2002年   25篇
  2001年   16篇
  2000年   22篇
  1999年   17篇
  1998年   28篇
  1997年   14篇
  1996年   16篇
  1995年   18篇
  1994年   15篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1347条查询结果,搜索用时 31 毫秒
61.
An optimum nanostructure and pore size of catalyst supports is very important in achieving high catalytic performances. In this instance, we evaluated the effects of various carbon nanostructures on the catalytic performances of carbon‐supported platinum (Pt/C) electrocatalysts experimentally and numerically. The Pt/C catalysts were prepared using a hybrid method involving the preparation of dense, hollow, and porous nanostructured carbon particle via aerosol spray pyrolysis followed by microwave‐assisted Pt deposition. Electrochemical characterization of the catalysts showed that the porous Pt/C catalyst gave the best performance; its electrochemical surface area was much higher, more than twice than those of hollow or dense Pt/C. The effects of pore size on electrocatalysis were also studied. The results showed the importance of a balance between mesopores and macropores for effective catalysis with a high charge transfer rate. A fluid flow model showed that good oxygen transport contributed to the catalytic activity. © 2015 American Institute of Chemical Engineers AIChE J, 62: 440–450, 2016  相似文献   
62.
63.
We studied the use of poly(ethylene glycol) (PEG)-modified dendrimers as a nanocapsule with a biocompatible surface. We designed PEG-modified dendrimers having a shell of hydrophobic amino acid residues in the peripheral moiety of the dendrimer to increase their encapsulation ability. Subsequently, l-phenylalanine or γ-benzyl-l-glutamate residues were introduced to all chain ends of the poly(amidoamine) G4 dendrimers. Furthermore, PEG (MW 2000) chains were attached to the amino acid residues. These hydrophobic amino acid residues rendered the PEG-modified dendrimers as more compact. After binding of Rose Bengal (RB) guest molecules to dendrimers, an assay using the Klotz plot showed that the hydrophobic amino acid layer slightly affected the guest site number, but significantly increased intrinsic binding of the dendrimers to guest molecules. The PEG-modified dendrimers with the hydrophobic amino acid layer were better able to retain guest molecules than the dendrimer without the layer: they are therefore useful for drug delivery.  相似文献   
64.
Two low molecular weight silicone compounds, a cyclic type having vinyl groups and a chain-type having Si-H bonds, a catalyst for curing, and a catalyst regulator were mixed. The mixture was impregnated into exfoliated graphite (EG) by sorption, and cured in air at 200 °C. By this process cross-linked silicone coatings were formed on graphite flakes. The composites of Si-C-O glass-like compounds and EG were synthesized by heat treatment of this precursor at 1000-1400 °C for 1 h in argon. The composites formed at 1000-1300 °C were amorphous by XRD and had practically the same chemical composition: Si 44-45, C 27-29, O 25-26, H < 0.5, all in mass%. The 29Si MAS-NMR spectra indicated that the compound formed at 1000 °C was mainly composed of siloxane bonds and amorphous silica, whereas in the compound formed at 1300°C, Si-C bonds and amorphous silica were predominant. The insertion/extraction characteristics of lithium ions for the electrode prepared with composite:poly(vinylidene fluoride) = 90:10 mass% were examined in 1 mol L−1 LiClO4 solution of ethylene carbonate:diethyl carbonate = 50:50 vol%. High, 650-700 mA h g−1, capacities and steady cycle performance at 50 mA g−1 were achieved with the composites formed at 1250-1300 °C. Capacities of the composites formed at 1200 °C and lower were initially higher but decreased with increasing number of cycles. The composites formed at 1350 °C showed good cycle performance but the capacity was about 500 mA h g−1 due to the formation of β-SiC. Except for the first cycle, the capacity-potential characteristics were similar to those of hard carbons and the coulomb efficiency was 95-100%. For all the composites the capacity was larger than that of graphite (372 mA h g−1) in the range of 50-200 mA g−1. Due to the large insertion capacity of the first cycle, the efficiency was low (60-70%) at first. By short-circuiting the working electrode to the lithium foil counter electrode for a certain period, the irreversible capacity of the first cycle was almost eliminated. It indicates that direct doping of lithium ions into composites is a promising way to increase the efficiency of the first cycle.  相似文献   
65.
An organic–inorganic proton conductive composite material consisting of a biopolymer was prepared by mixing the pectin, tetraethyl titanate, and imidazole. Although the pectin material without the composite dissolved in water, the pectin–inorganic composite material did not show water solubility. In addition, in the composite material, the pectin and imidazole formed an acid–base structure by an electrostatic interaction, and as a result, these composite materials showed a thermal stability at intermediate temperatures (100–200°C). Furthermore, these composite materials indicated the proton conductivity of 5.6 × 10?4 S cm?1 at 180°C under anhydrous conditions. The activation energy of the proton conduction under anhydrous conditions was 0.32–0.22 eV and these values were one order of magnitude higher than that of the typical humidified perfluorinated membrane, such as Nafion®. The organic–inorganic composite material consisting of a biocomponent may have the potential to be utilized as a novel proton conductor under anhydrous conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42433.  相似文献   
66.
Fabrication of high-aspect-ratio microstructures was performed by proton beam writing (PBW) using a microbeam line at Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA Takasaki, JAPAN. As one of the applications of the high-aspect-ratio structures micro-machined by PBW, we utilized the high-aspect pillars for electric-micro filters of microbes such as Escherichia coli and Yeast based on the dielectrophoretic force. The filter is equipped with high-aspect pillars with a height of ~20 μm and a diameter of ~1 μm on a glass plate. Evaluation of the dielectrophoresis (DEP) device for capturing E. coli and Yeast was made using either observation by optical microscope or photoluminescence (PL) measurements.  相似文献   
67.
Monosodium glutamate (GluNa)-compounded starch was prepared by heat-moisture treating a mixture of tapioca starch and GluNa. GluNa-compounded starch exhibited a higher gelatinization temperature and reduced swelling and solubility, essentially lower hardness of the granule center, and paste viscosity than those of the heat-moisture treated tapioca starch and the untreated starch. However, its appearance, unit chain length distribution, and α-amylase digestibility were similar to those of the heat-moisture treated tapioca. It is thus concluded that GluNa compounding is useful for providing a unique type of starch that possesses a less swollen and viscous texture than that produced with simple heat-moisture treatment.  相似文献   
68.
Bulk multifilled n- and p-type skutterudites with La as the main filler were fabricated using the spark plasma sintering (SPS) method. The thermoelectric properties and thermal stability of these skutterudites were investigated. It was found that the interactions among the filling atoms also play a vital role in reducing the lattice thermal conductivity of the multifilled skutterudites. ZT = 0.76 for p-type La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 and ZT = 1.0 for n-type La0.3Ca0.1Al0.1Ga0.1In0.2Co3.75Fe0.25Sb12 skutterudites have been achieved. Furthermore, the differential scanning calorimetry (DSC) results show that there is no skutterudite phase decomposition till 750°C for the La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 sample. The thermal stability of the La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 skutterudite is greatly improved. Using the developed multifilled skutterudites, the fabricated module with size of 50 mm × 50 mm × 7.6 mm possesses maximum output power of 32 W under the condition of hot/cold sides = 600°C/50°C.  相似文献   
69.
Hydrogen storage is one of the most important issues to realize hydrogen society especially for on-board usage. Recently, high-pressure metal hydride (MH) tank attracts many attentions due to its high volumetric hydrogen storage density and relatively easy heat management. To emphasize its merits, further improvements of properties of MH, such as capacity, hydrogen desorption capability at low temperature and durability, are required. In this paper, V–Ti–Cr alloys of V-rich compositions were investigated with perspective of increasing of hydrogen desorption pressure and durability. In both of 60at%V–Ti–Cr and 80at%V–Ti–Cr alloys, good relationship between hydrogen desorption pressure and Ti content was observed. In comparing with 60at%V–Ti–Cr alloys, 80at%V–Ti–Cr alloys showed good durability. It is quite notable that relationship between limitation line (upper substitution limit of Ti by Cr without degradation of hydrogen capacity) and desorption pressure for V–Ti–Cr ternary system with V-rich composition is clarified. And also, it is revealed that in the case of V–Ti–Cr ternary system, not only Ti/Cr ratio but also V content is important factor to obtain alloys with high hydrogen desorption pressure. 75at%V–5at%Ti–Cr as-cast sample showed good durability, hydrogen desorption capability at low temperature and relatively high effective hydrogen capacity simultaneously.  相似文献   
70.
The evolution of the ion beam induced luminescence (IBIL) of the polyethylene terephthalate (PET) foils was studied under the irradiation of H and He ions of MeV energy. The optical and chemical changes of the samples were also examined by photo-stimulated luminescence and optical absorption measurements after the irradiation. A prominent broad emission peak of IBIL appeared at around 380 nm, and its intensity monotonically decreased during the ion irradiation. The decay curves of the emission intensity were quantitatively explained as a function of the electronic energy deposition of the incident H and He ions. On the contrary, to the decrease of the main emission peak, a growth of new peaks was observed in the wavelengths between 500 and 600 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号