首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   14篇
  国内免费   1篇
电工技术   18篇
化学工业   131篇
金属工艺   17篇
机械仪表   17篇
建筑科学   14篇
矿业工程   1篇
能源动力   9篇
轻工业   56篇
水利工程   2篇
无线电   17篇
一般工业技术   78篇
冶金工业   35篇
原子能技术   26篇
自动化技术   44篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   13篇
  2018年   13篇
  2017年   16篇
  2016年   14篇
  2015年   5篇
  2014年   14篇
  2013年   36篇
  2012年   25篇
  2011年   37篇
  2010年   25篇
  2009年   24篇
  2008年   29篇
  2007年   22篇
  2006年   23篇
  2005年   15篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   8篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   1篇
  1994年   5篇
  1993年   8篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有465条查询结果,搜索用时 0 毫秒
71.
In the current design practices of steel-strip reinforced earth walls (SSREWs), the length of the reinforcing material is determined based on the equilibrium between the reinforcement tension and the earth pressure acting on the wall. Here, the resistance of the reinforcing material laid in the active failure zone (AFZ) is not considered. Moreover, the mechanical role of the reinforcing material against the integrity of the SSREW has not been sufficiently verified. Regarding the seismic stability of SSREW, although it is investigated by treating the entire reinforced earth wall as a rigid body, this inspection method is for gravity-retaining walls, and the difference in the seismic behavior between the SSREW and the rigid body is not clear. In this study, therefore, dynamic centrifuge model tests on 6 types of SSREWs were conducted to clarify the following items: (1) the basic earthquake behavior of a SSREW, (2) the mechanical role of the reinforcing material laid in the AFZ and (3) the mechanical role of the reinforcing material against the integrity of the SSREW. The results indicated that the reinforcing material laid in the AFZ can restrain the amount of deformation of the wall during earthquakes. Furthermore, the more stable the AFZ is, the smaller the maximum wall displacement will be.  相似文献   
72.
Someda  Hiroshi  Akagi  Takanori  Kajikawa  Yuya 《Scientometrics》2022,127(8):4299-4314
Scientometrics - A simple and robust approach to predict the spillover effects of emerging technologies enables proper formulation of investment strategies. In this study, we propose the method in...  相似文献   
73.
We propose a novel solar cell structure with photonic nanocrystals coupled to quantum dots (QDs) for advanced management of photons and carriers. The photonic nanocrystals at the surface create an extra interaction between the photons and the QDs, which promotes light trapping. Photo-generated carriers can be efficiently transported by preparing vertically aligned QDs with electronic coupling. Implementation of the proposed structure was realized in crystalline Si solar cells with Ge QDs by development of a simple and practical formation method based on a wet chemical process without any lithography techniques. The wet process utilizes a periodically modulated etching rate induced by self-organized Ge QDs. The effectiveness of the proposed solar cell was demonstrated by the marked increase of the absolute conversion efficiency when compared with the control crystalline Si solar cells. It is found that light trapping by the photonic nanocrystals has a larger contribution to the efficiency improvement than the contributions from the carrier transport of the vertically aligned QDs.  相似文献   
74.
We have characterized the electronic structure of FeSe1−xTex for various x values using soft x-ray photoemission spectroscopy (SXPES), high-resolution photoemission spectroscopy (HRPES) and inverse photoemission spectroscopy (IPES). The SXPES valence band spectral shape shows that the 2 eV feature in FeSe, which was ascribed to the lower Hubbard band in previous theoretical studies, becomes less prominent with increasing x. HRPES exhibits systematic x dependence of the structure near the Fermi level (EF): its splitting near EF and filling of the pseudogap in FeSe. IPES shows two features, near EF and approximately 6 eV above EF; the former may be related to the Fe 3d states hybridized with chalcogenide p states, while the latter may consist of plane-wave-like and Se d components. In the incident electron energy dependence of IPES, the density of states near EF for FeSe and FeTe has the Fano lineshape characteristic of resonant behavior. These compounds exhibit different resonance profiles, which may reflect the differences in their electronic structures. By combining the PES and IPES data the on-site Coulomb energy was estimated at 3.5 eV for FeSe.  相似文献   
75.
76.
77.
Grape waste as a biosorbent for removing Cr(VI) from aqueous solution   总被引:3,自引:0,他引:3  
Grape waste generated in wine production is a cellulosic material rich in polyphenolic compounds which exhibits a high affinity for heavy metal ions. An adsorption gel was prepared from grape waste by cross-linking with concentrated sulfuric acid. It was characterized and utilized for the removal of Cr(VI) from synthetic aqueous solution. Adsorption tests were conducted in batch mode to study the effects of pH, contact time and adsorption isotherm of Cr(VI), which followed the Langmuir type adsorption and exhibited a maximum loading capacity of 1.91 mol/kg at pH 4. The adsorption of different metal ions like Cr(VI), Cr(III), Fe(III), Zn(II), Cd(II) and Pb(II) from aqueous solution at different pH values 1-5 has also been investigated. The cross-linked grape waste gel was found to selectively adsorb Cr(VI) over other metal ions tested. The results suggest that cross-linked grape waste gel has high possibility to be used as effective adsorbent for Cr(VI) removal.  相似文献   
78.
Ata S  Kobashi K  Yumura M  Hata K 《Nano letters》2012,12(6):2710-2716
By using long single-walled carbon nanotubes (SWNTs) as a filler possessing the highest aspect ratio and small diameter, we mimicked the chain structure of polymers in the matrix and realized a highly conductive elastomeric composite (30 S/cm) with an excellent mechanical durability (4500 strain cycles until failure), far superior to any other reported conductive elastomers. This exceptional mechanical durability was explained by the ability of long and traversing SWNTs to deform in concert with the elastomer with minimum stress concentration at their interfaces. The conductivity was sufficient to operate many active electronics components, and thus this material would be useful for practical stretchable electronic devices.  相似文献   
79.
We previously reported that well-dispersed amorphous nanosilicas with particle size 70 nm (nSP70) penetrate skin and produce systemic exposure after topical application. These findings underscore the need to examine biological effects after systemic exposure to nanosilicas. The present study was designed to examine the biological effects. BALB/c mice were intravenously injected with amorphous nanosilicas of sizes 70, 100, 300, 1000 nm and then assessed for survival, blood biochemistry, and coagulation. As a result, injection of nSP70 caused fatal toxicity, liver damage, and platelet depletion, suggesting that nSP70 caused consumptive coagulopathy. Additionally, nSP70 exerts procoagulant activity in vitro associated with an increase in specific surface area, which increases as diameter reduces. In contrast, nSP70-mediated procoagulant activity was absent in factor XII-deficient plasma. Collectively, we revealed that interaction between nSP70 and intrinsic coagulation factors such as factor XII, were deeply related to nSP70-induced harmful effects. In other words, it is suggested that if interaction between nSP70 and coagulation factors can be suppressed, nSP70-induced harmful effects may be avoided. These results would provide useful information for ensuring the safety of nanomaterials (NMs) and open new frontiers in biological fields by the use of NMs.  相似文献   
80.
This review article focuses on our recent studies on novel soft materials consisting of carbon nanotubes. Single-walled carbon nanotubes, when suspended in imidazolium ion-based ionic liquids and ground in an agate mortar, form physical gels (bucky gels), where heavily entangled bundles of carbon nanotubes are exfoliated to give highly dispersed, much finer bundles. By using bucky gels, the first printable actuators that operate in air for a long time without any external electrolyte are developed. Furthermore, the use of polymerizable ionic liquids as the gelling media results in the formation of electroconductive polymer/nanotube composites with enhanced mechanical properties. The article also highlights a new family of nanotubular graphite, via self-assembly of amphiphilic hexabenzocoronene (HBC) derivatives. The nanotubes consist of a graphitic wall composed of a great number of pi-stacked HBC units and are electroconductive upon oxidation. The use of amphiphilic HBCs with functional groups results in the formation of nanotubes with various interesting properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号