首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2593篇
  免费   98篇
  国内免费   14篇
电工技术   85篇
综合类   4篇
化学工业   615篇
金属工艺   85篇
机械仪表   95篇
建筑科学   78篇
矿业工程   2篇
能源动力   213篇
轻工业   256篇
水利工程   30篇
石油天然气   32篇
无线电   277篇
一般工业技术   461篇
冶金工业   223篇
原子能技术   20篇
自动化技术   229篇
  2024年   7篇
  2023年   35篇
  2022年   56篇
  2021年   118篇
  2020年   79篇
  2019年   78篇
  2018年   116篇
  2017年   88篇
  2016年   98篇
  2015年   70篇
  2014年   91篇
  2013年   253篇
  2012年   175篇
  2011年   173篇
  2010年   123篇
  2009年   111篇
  2008年   104篇
  2007年   84篇
  2006年   79篇
  2005年   58篇
  2004年   49篇
  2003年   58篇
  2002年   46篇
  2001年   45篇
  2000年   49篇
  1999年   30篇
  1998年   67篇
  1997年   44篇
  1996年   37篇
  1995年   38篇
  1994年   20篇
  1993年   28篇
  1992年   7篇
  1991年   15篇
  1990年   13篇
  1989年   12篇
  1988年   23篇
  1987年   21篇
  1986年   15篇
  1985年   13篇
  1984年   15篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1976年   6篇
  1975年   6篇
  1974年   8篇
排序方式: 共有2705条查询结果,搜索用时 0 毫秒
101.
A neuro-fuzzy modeling technique was used to predict the effective of thermal conductivity of various fruits and vegetables. A total of 676 data point was used to develop the neuro-fuzzy model considering the inputs as the fraction of water content, temperature and apparent porosity of food materials. The complexity of the data set which incorporates wide ranges of temperature (including those below freezing points) made it difficult for the data to be predicted by normal analytical and conventional models. However the adaptive neuro-fuzzy model (ANFIS) was able to predict conductivity values which closely matched the experimental values by providing lowest mean square error compared to multivariable regression and conventional artificial neural network (ANN) models. This method also alleviates the problem of determining the hidden structure of the neural network layer by trial and error.  相似文献   
102.
The influence of boric acid (BA) and borax (BO) neutron-absorbing fillers on thermal stability and viscoelastic behavior of natural rubber (NR) low-density polyethylene composites has been studied. The thermal degradation and dynamic mechanical properties of the composites have been analyzed as a function of temperature. The results revealed the enhancement of thermal stability of the composites by the addition of BA and BO fillers. The flame resistance of the material was improved by the addition of both the fillers. The storage modulus was found to be dependent upon the temperature and nature of the filler. The amount of NR chains immobilized by filler particles has been quantified from dynamic mechanical analysis and secondary filler/filler interactions have been verified by the Payne effect analysis. Finally, the experimental results have been compared with theoretical predictions.  相似文献   
103.
The structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3−δ-SDC carbonate (LSCF-SDC carbonate) composite cathodes were investigated with respect to the calcination temperatures and the weight content of the samarium-doped ceria (SDC) carbonate electrolyte. The composite cathode powder has been prepared from La0.6Sr0.4Co0.2Fe0.8O3−δ and SDC carbonate powders using the high-energy ball milling technique in air at room temperature. Different powder mixtures at 30 wt%, 40 wt% and 50 wt% of SDC carbonate were calcined at 750-900 °C. The findings indicated that the structure and thermal properties of the composite cathodes were responsive to the calcination temperature and the content of SDC carbonate. The absence of any new phases as confirmed via XRD analysis demonstrated the excellent compatibility between the cathode and electrolyte materials. The particle size of the composite cathode powder was ∼0.3-0.9 μm having a surface area of 4-15 m2 g−1. SEM investigation revealed the presence of large particles in the resultant powders resulting from the increased calcination temperature. The composite cathode containing 50 wt% SDC carbonate was found to exhibit the best thermal expansion compatibility with the electrolyte.  相似文献   
104.
This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.  相似文献   
105.
A partex surface was modified by a UV‐curing system with epoxy acrylate (EB‐600). A set of formulations was prepared with oligomer and the trifunctional monomer trimethylol propane triacrylate in different combinations of percentages (1–5%) of sand to study the role of sand in various physical properties of UV‐cured thin films, as well as partex surfaces. Increased pendulum hardness (PH), gloss, adhesion, and abrasion values were obtained by the addition of sand into the partex surfaces. The best results were obtained with the formulation containing 3% sand. An enhanced PH and a decreased percentage of gel content of the UV‐cured film was observed with an increase of the sand concentration. A simulated weathering test was performed with partex surfaces cured by a formulation containing 3% sand in the base coat. The losses of the physical properties were found to be lower over the surface treated with the formulation containing sand. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2385–2392, 2002  相似文献   
106.
Margarines made from refined, bleached, and deodorized palm oil at different emulsion temperatures showed no significant difference in their consistency, polymorphic behavior, and solid fat content (SFC) during storage, although differences were observed during processing. The emulsion temperatures studied were 40, 45, and 50°C, with other parameters such as emulsion flow rates, tube cooler temperature, and pin rotor speed kept constant. The SFC developed during processing and storage at 28°C was measured to evaluate the quality of margarine. The emulsion contained no SFC at any emulsion temperature studied. However, the amount of SFC in the perfector or tube cooler unit increased to 15.9, 13.9, and 15.6% in margarine produced at emulsion temperatures of 40, 45, and 50°C, respectively. At 40°C, the lowest SFC was developed during storage even though this margarine had the highest consistency. The softening point of this sample was moderately high and closely related to the type of crystal developed, which was a mixture of β′ and β crystals. Emulsion at 45°C gave the most stable margarine consistency and SFC with crystal in the β′ form even after the fourth week. At 50°C, moderately soft product was produced, which might be undesirable for some applications, although the crystals were in the β′ form.  相似文献   
107.
The effects of scraped-surface tube cooler temperatures on the isothermal solid fat content (SFC) of palm oil margarine during processing and on margarine consistency (yield value, g/cm2), SFC, and polymorphic changes in storage were studied. SFC was measured in the mixing tank after leaving the tube cooler and the pin worker. The SFC at the tube cooler exit was proportional to the amount of cooling; a higher SFC was produced by more extreme cooling treatment. The SFC of all margarines were reduced in the pin worker, and the reduction was related to the initial SFC profile of palm oil. Margarine samples were stored at 28°C for 28 d and tested daily. Margarine processed at 25°C in the tube cooler had the highest consistency and the least change in SFC, but by the second week crystals had transformed into the β form. Uniform product consistency and SFC were observed in margarines processed at 20 and 15°C. These margarines retained the β′ crystal form for 3 and 4 wk, respectively. The best palm oil margarine was obtained with a tube cooler temperature of 15°C and a residence time of 1.8 min.  相似文献   
108.
In order to improve the quality of paperboard (a well‐known packing material) surface by photocuring method, different formulations were developed with aliphatic epoxy diacrylate (EA‐1020) oligomer along with reactive monomers of various functionalities. The reactive monomers are tripropylene glycol diacrylate (TPGDA), a difunctional monomer, and trimethylol propane triacrylate (TMPTA), a trifunctional monomer. 2‐Benzyl‐2‐dimethylamino‐1(4morpholinophenyl) butanone‐1 (Irgacure 369), a photoinitiator (2%), was incorporated into the formulations to initiate photocuring reaction. The formulated solutions were coated on clean glass plate and irradiated under UV radiation of different intensities. Different physical properties like pendulum hardness and gel content of the cured films were studied. The formulation containing TMPTA showed better properties. After characterization of the films, these formulations were applied on paperboard surfaces and cured under the same UV radiation. Various physicomechanical properties such as pendulum hardness, tensile properties, surface gloss, adhesion, abrasion, and water uptake were studied. The best performance was obtained at 12 passes of radiation with 18% TMPTA‐containing formulation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1774–1780, 2003  相似文献   
109.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   
110.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号