This publication is a case study of the seasonal variability of mine water drainage from the Saint Louis Tunnel (SLT) at the inactive Rico-Argentine mine site located in southwestern Colorado. It is an introductory paper for the two passive water treatment system technology evaluations contained in this issue. Mine water chemistry changes from baseflow to a snowmelt runoff event (SMRE) where snowmelt runoff follows preferential migration pathways to flush acidic weathering products from the upper mine workings to the SLT. Baseflow mine drainage is characterized as circumneutral, with Zn, Cd, Mn, and Ni concentrations primarily in the dissolved form. Dissolved Zn, Mn, Fe, and potentially Cd illustrate equilibrium with carbonate minerals. Total concentrations of Fe, Cu, Pb, and As are primarily in the suspended form and suggest sorption to Fe oxides. Mine water chemistry during the SMRE reflects mixing of circumneutral baseflow waters with more acidic waters flushing the upper mine workings. Geothermal activity provides for a consistently warm mine water discharge from the SLT. The two seasons that provide the most challenge to passive water treatment of SLT mine drainage are the SMRE period and the low flow stage of the Dolores River. Mine water flow and chemistry during SMRE are highly correlated with Dolores River flow and this site conceptual model was and will be used to assist in pilot project evaluation, water treatment system design, monitoring system design, a seasonal compliance approach, and water management.
The kinetics of the molecular vaporization process of 21 plasticizers were investigated in detail. By both isothermal and nonisothermal kinetic methods, it was evident that 11 were quite pure single compounds, while 10 were clearly mixtures of compounds. For the single component species internal energies for vaporization and rates of volatilization are listed. The internal energies of vaporization are about one-half or less of values one can estimate from the additive factor method of Small. Thus, solubility parameters based on our experimental values are low by about 30 percent. From this and previous work on linear alkanes, it is concluded that in the molecular vaporization process, the large organic molecules studied evaporate approximately as spheres and hence low values for the energy of vaporization are obtained. Consequently, the difference between our experimental energy and that estimated from solubility parameters is the energy for extending the molecule in a vacuum environment. 相似文献
Nursery-age pigs (n=198) were used to evaluate the difference in abscess formation at needle-free jet and conventional needle-and-syringe injection sites. Needle-free jet injection was used to administer injections in the neck and ham on one side of the animal whereas needle-and-syringe was used for neck and ham injections on the opposite side. Immediately prior to injection, the injection site surfaces were contaminated with an inoculum of Arcanobacterium pyogenes. Each pig was humanely euthanized 27 or 28days after injections. Histopathological results showed that needle-free jet injection was associated with more abscesses than needle-and-syringe injection at both neck (P=0.0625) and ham (P=0.0313) injection sites. Out of 792 injection sites, only 13 abscesses were observed, with 12 of those present at needle-free jet injection sites. Needle-free jet injection may increase the occurrence of injection site abscesses that necessitate carcass trimming at pork processing plants. 相似文献
Some currently-available formulations of LaRC?-TPI, a thermoplastic polyimide originally developed at NASA-Langley, were found to be highly susceptible to environmental stress cracking when exposed to solvents such as acetone, toluene, diglyme and methyl ethyl ketone. The combination of stress and solvent led to rapid cracking in films and adhesive layers of this material system. Residual cool-down stresses induced when the LaRC-TPI is used as an adhesive or coating led, in the presence of a solvent, to dense “mud crack” patterns which relieve a portion of the stored energy. Because these through-the-thickness cracks are not able to relieve the stored energy in the vicinity of the adherends, additional fractures in the form of curious spiral tunnel cracks initiated and grew inward within each adhesive fragment. Micrographs of the spiral fractures are given, along with a qualitative explanation for the failure process as observed in adhesives and coatings. 相似文献
The lattice constants of boron carbides have been determined by powder X-ray diffraction for samples with compositions between about 7.7 and 20.5 at.% carbon. The boundaries of the single-phase region are at about 9 at.% carbon and near, but likely somewhat less than, 20 at.% carbon. The composition dependence of the lattice constants thus established provides a method of assessing the carbon concentration of unknown materials. In particular, assignment of the approximate composition of single crystals used in previous studies allows for a systematic examination of changes in interatomic separation as a function of composition. These changes are discussed in terms of a structural model of the boron carbide solid solution. 相似文献
The structure of cleaved thyroxine-binding globulin (TBG) hasbeen modelled on the crystal structure of cleaved 1-antitrypsin(a member of the serine proteinase inhibitor, serpin, superfamily)based on the high sequence homology exhibited by the two proteins.Particular attention was paid to the identification and modelledcharacteristics of the thyroxine binding site. The primary aimof the study was to compare the site qualitatively with thecrystallographically determined binding site of transthyretin,the other major transporter of thyroxine, in an attempt to explainthe higher binding affinity of the site compared with the knownthyrox ine binding site in transthyretin (1010 versus 108 M1).The proposed binding site shares some similar characteristicswith the transthyretin binding site but also includes a clusterof aromatic residues which are entirely absent in transthyretin.It is proposed that this might account for the substantial differencein binding affinities. 相似文献
The microstructure of Al2O3 formed by oxidation of a model NiCrAlY alloy during electron-beam physical vapor deposition of ZrO2–7.6 mol% YO1.5 is examined and compared with that formed on the bare substrate. The growth rate, morphology, and chemical composition of the oxide vary among the different constituents of the alloy surface and are further influenced by the O2 partial pressure and the physical presence of the thermal barrier coating (TBC) layer. These differences, however, are largely limited to the outer oxide layer. The interplay between the TBC and the growing oxide leads to the formation of a fine-grain Al2O3–ZrO2"mixed zone" within the thermally grown oxide. A mechanism is outlined to explain this behavior, based on the dissolution of ZrO2 in a transient Al2O3 structure growing by outward diffusion of Al, and its subsequent reprecipitation when the metastable phase transforms to the stable α-Al2O3 form. 相似文献
Barium‐substituted CsAlSi2O6 pollucites, CsxBa(1?x)/2AlSi2O6, and barium‐ and iron‐substituted pollucites, CsxBa(1?x)/2AlxFe1?xSi2O6 and CsxBa1?xAlxFe1?xSi2O6 were synthesized with 1 ≥ x≥ 0.7 using a hydrothermal synthesis procedure. Rietveld analysis of X‐ray diffraction data confirmed the substitution of Ba for Cs and Fe for Al, respectively. The crystallographic analysis also describes the effects of three different types of pollucite substitutions on the pollucite unit cell: Ba2+ for Cs1+ cation results in little effect on cell dimensions, intermediate concentrations of Ba2+ and Fe3+ substitution result in net minor expansion due to Fe3+ addition, and large Ba and Fe substitutions result in overall framework contraction. Elemental analysis combined with microscopy further supports the phase purity of these new phases. These materials can be used to study the stability of CsAlSi2O6 as a durable ceramic waste form, which could accommodate with time Cs and its decay product, Ba. Furthermore, success in iron substitution for aluminum into the pollucite lattice predicts that redox charge compensation for Cs cation decay is possible. 相似文献