首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1114篇
  免费   44篇
  国内免费   6篇
电工技术   40篇
综合类   3篇
化学工业   362篇
金属工艺   38篇
机械仪表   23篇
建筑科学   30篇
矿业工程   1篇
能源动力   55篇
轻工业   120篇
水利工程   4篇
石油天然气   1篇
无线电   84篇
一般工业技术   225篇
冶金工业   26篇
原子能技术   18篇
自动化技术   134篇
  2023年   8篇
  2022年   18篇
  2021年   27篇
  2020年   14篇
  2019年   17篇
  2018年   36篇
  2017年   25篇
  2016年   45篇
  2015年   24篇
  2014年   36篇
  2013年   60篇
  2012年   63篇
  2011年   84篇
  2010年   71篇
  2009年   76篇
  2008年   74篇
  2007年   62篇
  2006年   44篇
  2005年   36篇
  2004年   26篇
  2003年   35篇
  2002年   31篇
  2001年   24篇
  2000年   13篇
  1999年   19篇
  1998年   25篇
  1997年   24篇
  1996年   16篇
  1995年   20篇
  1994年   14篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1973年   1篇
  1972年   2篇
  1970年   2篇
  1969年   4篇
  1968年   3篇
  1967年   3篇
  1965年   1篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
41.
The biggest issue that must be addressed in promoting widespread use of fuel cell vehicles (FCVs) is to reduce the cost of the fuel cell system. Especially, it is of vital importance to reduce platinum (Pt) loading of catalyst layers (CLs) in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC). In order to lower the Pt loading of the MEA, mass transport of reactants related to the performance in high current density should be enhanced significantly as well as kinetics of the catalyst, which can result in the better Pt utilization and effectiveness. In this study, we summarized our analytical approach and methods for reduction of Pt loading in CLs. Microstructure, mass transport properties of the reactants, and their relation in CLs were elucidated by applying experimental analyses and computational methods. A simple CL model for IV performance prediction was then established, where experimentally elucidated parameters of the microstructure and the properties in CLs were taken into account. Finally, we revealed the impact of lowering the Pt loading on the transport properties, polarization, and the IV performance.  相似文献   
42.
The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of Ra evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with Ra values ranging between ∼2 and ∼3 nm but not for those with Ra of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.  相似文献   
43.
An almost fully saponified atactic poly(vinyl alcohol) and an atactic poly(vinyl alcohol‐block‐vinyl acetate) of which degree of saponification is 89 mol % were blended by a solution casting method. The phase structure of the blend film was analyzed by optical microscopy, 13C‐NMR, and differential scanning calorimetry. The most remarkable structure of the blend was composed of cylindrical domains penetrating the film. The swelling behavior of the blend films was also investigated in the dimethylsulfoxide and water mixed solvents to find differences in solubility and diffusion behavior between the matrix and the domain. The cylindrical domains could be selectively dissolved away in water and the film became porous. We tried to change the size of the cylindrical domain with various film preparation conditions. This aimed to turn the film into the useful filter membrane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1807–1815, 2002  相似文献   
44.
Study on the Anti-Coking Nature of Ni/SrTiO3 Catalysts by the CH4 Pyrolysis   总被引:1,自引:0,他引:1  
A solid phase crystallization (spc) method was applied for the preparation of SrTiO3-supported Ni catalysts and compared to the impregnation (imp) method. spc-Ni0.2/SrTiO3 has highly dispersed and stable Ni metal particles resulting in higher activity and higher sustainability against coking than imp-Ni0.2/SrTiO3 in the partial oxidation of CH4. Both catalysts were tested for the CH4 pyrolysis in order to elucidate the catalytic nature against coking of spc-Ni0.2/SrTiO3. The amount of carbon and the rate of H2 formation were similar over both catalysts at both 773 and 1073 K. On both catalysts, CH4 continuously decomposed at 773 K, while the rate of CH4 pyrolysis quickly decreased at 1073 K. Fibrous carbons grew up with a Ni metal particle on the tip of the fiber at 773 K, while carbon balls and short carbon fibers with a Ni metal particle encapsulated inside formed and no sufficient growth of the fiber was observed at 1073 K. The carbon species formed at 773 K was hydrogenated completely to CH4 around 873 K, while the hydrogenation of that formed at 1073 K needed higher temperature around 1073 K. However, the carbon species formed on both the catalysts at either 773 or 1073 K was completely oxidized around 773 K. Thus, judging from the anti-coking nature, the behaviors in the CH4 pyrolysis are similar over both catalysts, nonetheless spc-Ni0.2/SrTiO3 was far superior to imp-Ni0.2/SrTiO3 in the CH4 oxidation. It is likely that the high sustainability against coking of spc-Ni0.2/SrTiO3 is not due to its intrinsic nature suppressing the coking but due to its high activity of reforming which can quickly eliminate the carbon formed on the catalyst surface.  相似文献   
45.
The samples of sliced and mashed apples were freeze-dried by controlling their surface temperatures over the usual pressure range of commercial operations. The surface of sliced samples could not be maintained at above 10°C in order to prevent the frozen layer from melting, while that of mashed samples was allowed to heat up to 70°C.

Thermal conductivities and permeabilities were determined by applying the uniformly-retreating-ice front model to the dried layer of the samples undergoing freeze-drying. The values of permeability for the mashed samples were found to depend on the ice-crystallization time during freezing. The results indicated that the drying rate of sliced samples was limited by the transfer rate of water vapor flowing through the dried layer. A cellular structural model is proposed for predicting the permeability of the dried layer, based on the resistance of the cell membrane to molecular transfer of water vapor.  相似文献   
46.
Z‐isomers of lycopene exhibit higher bioavailability and antioxidant capacity than those of the all‐E‐isomer. Therefore, it is important to develop an efficient and environmentally friendly procedure for Z‐isomerization. The current methods for Z‐isomerization of (all‐E)‐lycopene use toxic chemicals such as organic solvents and catalysts. This study is aimed to develop a chemical‐free method for Z‐isomerization of (all‐E)‐lycopene in tomato powder by hot air and superheated steam heating. The Z‐isomerization reaction is promoted by heating above the melting point of lycopene. When heated with superheated steam, the thermal decomposition of lycopene is suppressed compared to that when heated with hot air. When tomato powder is heated at 240 °C for 5 min by superheated steam, the total Z‐isomer content and remaining lycopene are 69.0% and 90.7%, respectively, while with hot air heating, the total Z‐isomer content and remaining lycopene are 69.9% and 68.0%, respectively. These results indicate that the thermal Z‐isomerization of lycopene occurs in the molten state and heating in a low oxygen atmosphere suppresses the thermal decomposition of lycopene. Practical Applications: Tomato powder rich in lycopene Z‐isomers is an important ingredient for the food and animal feed industries. Since Z‐isomers of lycopene are more soluble in solvents including ethanol which is a low‐toxicity and environmentally friendly solvent, the efficiency of lycopene extraction with ethanol can be improved by using the Z‐isomer‐rich tomato powder as a raw material. The obtained Z‐isomer‐rich extract has a high added value because the Z‐isomers have higher bioavailability and antioxidant capacity than those of the all‐E‐isomer. In addition, since lycopene Z‐isomers exhibit higher accumulation efficiency and better color improvement in hen egg yolks than those of the all‐E‐isomer, Z‐isomer‐rich tomato powder is an effective animal feed.  相似文献   
47.
Methanosarcina species pyrrolysyl‐tRNA synthetase (PylRS) attaches Pyl to its cognate amber suppressor tRNA. The introduction of two mutations (Y384F and Y306A) into PylRS was previously shown to generate a mutant, designated LysZ‐RS, that was able to attach N‐benzyloxycarbonyl‐L ‐lysine (LysZ) to its cognate tRNA. Despite the potential of LysZ derivatives, further LysZ‐RS engineering has not been performed; consequently, we aimed to generate LysZ‐RS mutants with improved LysZ incorporation activity through in vitro directed evolution. Using a liposome‐based in vitro compartmentalization (IVC) approach, we screened a randomly mutagenized gene library of LysZ‐RS and obtained a mutant that showed increased LysZ incorporation activity both in vitro and in vivo. The ease and high flexibility of liposome‐based IVC should enable the evolution of not only LysZ‐RS that can attach various LysZ derivatives but also of other enzymes involved in protein translation.  相似文献   
48.
The atomic and electronic structures of inversion domain boundaries in Mn‐Al dual‐doped ZnO (Zn0.89Mn0.1Al0.01O) have been investigated. Using atomic‐resolution scanning transmission electron microscopy, a head‐to‐head c‐axis configuration and cation stacking sequence of αβαβ|γ|αβαβ along the c‐axis were observed at the basal‐plane inversion domain boundary. Energy‐dispersive X‐ray spectroscopy and electron energy‐loss spectroscopy revealed significant localization of Mn and minor localization of Al at the basal‐plane inversion domain boundary. Based on experimental findings, a Mn‐doped basal‐plane inversion domain boundary slab model was constructed and refined by first principles calculations. The model is in agreement with atomic‐resolution images. The local electronic density of states of the slab model basal‐plane inversion domain boundary shows a hybridization of the Mn d and O p states within the valence band and localized Mn d states in the conduction band. The thermoelectric properties of Zn0.99?xMnxAl0.01O ceramics have been reported in a previous work. In this work, the effects of inversion domain boundaries on the thermoelectric properties are discussed. In comparison to Zn0.99?xMnxAl0.01O ceramics with x≤0.05, inversion domain boundaries in Zn0.89Mn0.1Al0.01O caused thermal and electrical conductivity reduction due to interface scattering of phonons and electrons. The Seebeck coefficient increased, suggesting electron filtering at inversion domain boundaries.  相似文献   
49.
The development of inversion domain networks consisting of basal‐plane and pyramidal‐plane inversion domain boundary (b‐IDB and p‐IDB) interfaces within grains in Sn‐Al dual‐doped ZnO (Zn0.98Sn0.01Al0.01O) polycrystalline ceramics has been confirmed using transmission electron microscopy. The atomic structure of the b‐IDB and p‐IDB interfaces has been analyzed using atomic‐resolution scanning transmission electron microscopy. The localization of Sn and Al at the respective sites of the b‐IDBs and p‐IDBs was confirmed by energy‐dispersive X‐ray spectroscopy. In contrast to Sn or Al single‐dopant addition to ZnO, which results in the formation of spinel phase precipitates without the development of inversion domain networks, Sn‐Al dual‐doping caused the suppression of spinel phase formation and the formation of monophasic inversion domain networks composed of RMO3(ZnO)n homologous phase compound members, where R and M represent dopants substituting at the b‐IDB and p‐IDB sites, with a general formula of SnAlO3(ZnO)n. The results of this study demonstrate that the formation of inversion domain networks in ZnO‐based ceramics can be stabilized via multiple‐dopant addition. This finding has potential implications for the modification of the bulk or nanoscale properties based on the choice of the specific dopants, R and M, the control of the ratio R:M and the value of n in the RMO3(ZnO)n homologous phase compound members constituting the inversion domain networks.  相似文献   
50.
Phase relationship of a BaO-ZrO2-YO1.5 system at 1500 and 1600 °C was examined in order to determine whether a phase separation at the composition of 15% yttrium-doped barium zirconate exists. According to a pseudoternary phase diagram of the BaO-ZrO2-YO1.5 system established by this work, the solubility of yttria into cubic barium zirconate at 1600 °C is 0.25 in a mole fraction of yttria (XtextYO1.5 ) (X_{{{text{YO}}_{1.5} }} ) . Thus, we confirmed that there is no phase separation at the composition of 15% yttrium-doped barium zirconate at 1600 °C. On the other hand, at 1500 °C, there might be a phase separation at the composition of 15% yttrium-doped barium zirconate into yttrium-doped barium zirconate where quite small amount of yttrium is doped and a new phase whose composition is close to reported BZ(II) phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号