首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4291篇
  免费   212篇
  国内免费   6篇
电工技术   35篇
综合类   2篇
化学工业   918篇
金属工艺   82篇
机械仪表   93篇
建筑科学   226篇
矿业工程   16篇
能源动力   155篇
轻工业   227篇
水利工程   60篇
石油天然气   32篇
无线电   336篇
一般工业技术   853篇
冶金工业   819篇
原子能技术   27篇
自动化技术   628篇
  2023年   45篇
  2022年   70篇
  2021年   117篇
  2020年   87篇
  2019年   96篇
  2018年   100篇
  2017年   93篇
  2016年   102篇
  2015年   96篇
  2014年   142篇
  2013年   269篇
  2012年   228篇
  2011年   294篇
  2010年   197篇
  2009年   191篇
  2008年   218篇
  2007年   193篇
  2006年   162篇
  2005年   122篇
  2004年   105篇
  2003年   112篇
  2002年   84篇
  2001年   59篇
  2000年   55篇
  1999年   49篇
  1998年   65篇
  1997年   69篇
  1996年   58篇
  1995年   42篇
  1994年   58篇
  1993年   44篇
  1992年   42篇
  1991年   32篇
  1990年   45篇
  1989年   46篇
  1988年   41篇
  1987年   51篇
  1986年   32篇
  1985年   42篇
  1984年   38篇
  1983年   39篇
  1982年   40篇
  1981年   30篇
  1980年   22篇
  1979年   42篇
  1978年   43篇
  1977年   23篇
  1976年   24篇
  1975年   31篇
  1973年   26篇
排序方式: 共有4509条查询结果,搜索用时 15 毫秒
101.
102.
103.
To effectively manage forested ecosystems an accurate characterization of species distribution is required. In this study we assess the utility of hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery and small footprint discrete return Light Detection and Ranging (LiDAR) data for mapping 11 tree species in and around the Gulf Islands National Park Reserve, in coastal South-western Canada. Using hyperspectral imagery yielded producer's and user's accuracies for most species ranging from > 52-95.4 and > 63-87.8%, respectively. For species dominated by definable growth stages, pixel-level fusion of hyperspectral imagery with LiDAR-derived height and volumetric canopy profile data increased both producer's (+ 5.1-11.6%) and user's (+ 8.4-18.8%) accuracies. McNemar's tests confirmed that improvements in overall accuracies associated with the inclusion of LiDAR-derived structural information were statistically significant (p < 0.05). This methodology establishes a specific framework for mapping key species with greater detail and accuracy then is possible using conventional approaches (i.e., aerial photograph interpretation), or either technology on its own. Furthermore, in the study area, acquisition and processing costs were lower than a conventional aerial photograph interpretation campaign, making hyperspectral/LiDAR fusion a viable replacement technology.  相似文献   
104.
Eddy covariance (EC) measurements have greatly advanced our knowledge of carbon exchange in terrestrial ecosystems. However, appropriate techniques are required to upscale these spatially discrete findings globally. Satellite remote sensing provides unique opportunities in this respect, but remote sensing of the photosynthetic light-use efficiency (ε), one of the key components of Gross Primary Production, is challenging. Some progress has been made in recent years using the photochemical reflectance index, a narrow waveband index centered at 531 and 570 nm. The high sensitivity of this index to various extraneous effects such as canopy structure, and the view observer geometry has so far prevented its use at landscape and global scales. One critical aspect of upscaling PRI is the development of generic algorithms to account for structural differences in vegetation. Building on previous work, this study compares the differences in the PRI: ? relationship between a coastal Douglas-fir forest located on Vancouver Island, British Columbia, and a mature Aspen stand located in central Saskatchewan, Canada. Using continuous, tower-based observations acquired from an automated multi-angular spectro-radiometer (AMSPEC II) installed at each site, we demonstrate that PRI can be used to measure ? throughout the vegetation season at the DF-49 stand (r2 = 0.91, p < 0.00) as well as the deciduous site (r2 = 0.88, p < 0.00). It is further shown that this PRI signal can be also observed from space at both sites using daily observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and a multi-angular implementation of atmospheric correction (MAIAC) (r2 = 0.54 DF-49; r2 = 0.63 SOA; p < 0.00). By implementing a simple hillshade model derived from airborne light detection and ranging (LiDAR) to approximate canopy shadow fractions (αs), it is further demonstrated that the differences observed in the relationship between PRI and ε at DF-49 and SOA can be attributed largely to differences in αs. The findings of this study suggest that algorithms used to separate physiological from extraneous effects in PRI reflectance may be more broadly applicable and portable across these two climatically and structurally different biome types, when the differences in canopy structure are known.  相似文献   
105.
For domains in which fitness is subjective or difficult to express formally, interactive evolutionary computation (IEC) is a natural choice. It is possible that a collaborative process combining feedback from multiple users can improve the quality and quantity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative interactive evolution (CIE), explores this potential. Picbreeder is an online community in which users can evolve and share images, and most importantly, continue evolving others' images. Through this process of branching from other images, and through continually increasing image complexity made possible by the underlying neuroevolution of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any other current IEC system. This paper discusses not only the strengths of the Picbreeder approach, but its challenges and shortcomings as well, in the hope that lessons learned will inform the design of future CIE systems.  相似文献   
106.
This paper addresses the problem of autonomous navigation of a micro air vehicle (MAV) in GPS‐denied environments. We present experimental validation and analysis for our system that enables a quadrotor helicopter, equipped with a laser range finder sensor, to autonomously explore and map unstructured and unknown environments. The key challenge for enabling GPS‐denied flight of a MAV is that the system must be able to estimate its position and velocity by sensing unknown environmental structure with sufficient accuracy and low enough latency to stably control the vehicle. Our solution overcomes this challenge in the face of MAV payload limitations imposed on sensing, computational, and communication resources. We first analyze the requirements to achieve fully autonomous quadrotor helicopter flight in GPS‐denied areas, highlighting the differences between ground and air robots that make it difficult to use algorithms developed for ground robots. We report on experiments that validate our solutions to key challenges, namely a multilevel sensing and control hierarchy that incorporates a high‐speed laser scan‐matching algorithm, data fusion filter, high‐level simultaneous localization and mapping, and a goal‐directed exploration module. These experiments illustrate the quadrotor helicopter's ability to accurately and autonomously navigate in a number of large‐scale unknown environments, both indoors and in the urban canyon. The system was further validated in the field by our winning entry in the 2009 International Aerial Robotics Competition, which required the quadrotor to autonomously enter a hazardous unknown environment through a window, explore the indoor structure without GPS, and search for a visual target. © 2011 Wiley Periodicals, Inc.  相似文献   
107.
108.
A combination of soft lithography and lift-off processing is presented for the fabrication of sulfonated polyaniline (SPAN) microstructures. A soft lithography based micromolding process was used to pattern sacrificial layers using a thermoplastic polymer. SPAN was then polymerized in situ to coat the patterned substrate. The sacrificial layer was removed by lift-off in an organic solvent, leaving the patterned SPAN on the substrate. This process was performed on several rigid and flexible substrates including glass, silicon, and polyimide. The film thickness and roughness were measured as a function of reaction time using atomic force microscopy. Patterns were also imaged using scanning electron microscopy. This process provides a cost effective and versatile method of patterning SPAN and has potential applications in a number of conducting polymer devices.  相似文献   
109.
ContextSome recent static techniques for automatic bug localization have been built around modern information retrieval (IR) models such as latent semantic indexing (LSI). Latent Dirichlet allocation (LDA) is a generative statistical model that has significant advantages, in modularity and extensibility, over both LSI and probabilistic LSI (pLSI). Moreover, LDA has been shown effective in topic model based information retrieval. In this paper, we present a static LDA-based technique for automatic bug localization and evaluate its effectiveness.ObjectiveWe evaluate the accuracy and scalability of the LDA-based technique and investigate whether it is suitable for use with open-source software systems of varying size, including those developed using agile methods.MethodWe present five case studies designed to determine the accuracy and scalability of the LDA-based technique, as well as its relationships to software system size and to source code stability. The studies examine over 300 bugs across more than 25 iterations of three software systems.ResultsThe results of the studies show that the LDA-based technique maintains sufficient accuracy across all bugs in a single iteration of a software system and is scalable to a large number of bugs across multiple revisions of two software systems. The results of the studies also indicate that the accuracy of the LDA-based technique is not affected by the size of the subject software system or by the stability of its source code base.ConclusionWe conclude that an effective static technique for automatic bug localization can be built around LDA. We also conclude that there is no significant relationship between the accuracy of the LDA-based technique and the size of the subject software system or the stability of its source code base. Thus, the LDA-based technique is widely applicable.  相似文献   
110.
In silico models that predict the rate of human renal clearance for a diverse set of drugs, that exhibit both active secretion and net re-absorption, have been produced using three statistical approaches. Partial Least Squares (PLS) and Random Forests (RF) have been used to produce continuous models whereas Classification And Regression Trees (CART) has only been used for a classification model. The best models generated from either PLS or RF produce significant models that can predict acids/zwitterions, bases and neutrals with approximate average fold errors of 3, 3 and 4, respectively, for an independent test set that covers oral drug-like property space. These models contain additional information on top of any influence arising from plasma protein binding on the rate of renal clearance. Classification And Regression Trees (CART) has been used to generate a classification tree leading to a simple set of Renal Clearance Rules (RCR) that can be applied to man. The rules are influenced by lipophilicity and ion class and can correctly predict 60% of an independent test set. These percentages increase to 71% and 79% for drugs with renal clearances of < 0.1 ml/min/kg and > 1 ml/min/kg, respectively. As far as the authors are aware these are the first set of models to appear in the literature that predict the rate of human renal clearance and can be used to manipulate molecular properties leading to new drugs that are less likely to fail due to renal clearance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号