首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
  国内免费   1篇
电工技术   1篇
化学工业   24篇
金属工艺   1篇
机械仪表   1篇
建筑科学   4篇
能源动力   4篇
轻工业   12篇
水利工程   1篇
无线电   6篇
一般工业技术   16篇
冶金工业   15篇
原子能技术   1篇
自动化技术   20篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   16篇
  2012年   6篇
  2011年   9篇
  2010年   10篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1983年   1篇
  1980年   2篇
  1977年   1篇
  1961年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
81.
Engineered and decellularized extracellular matrices (ECM) are receiving increasing interest in regenerative medicine as materials capable to induce cell growth/differentiation and tissue repair by physiological presentation of embedded cues. However, ECM production/decellularization processes and control over their composition remain primary challenges. This study reports engineering of ECM materials with customized properties, based on genetic manipulation of immortalized and death‐inducible human mesenchymal stromal cells (hMSC), cultured within 3D porous scaffolds under perfusion flow. The strategy allows for robust ECM deposition and subsequent decellularization by deliberate cell‐apoptosis induction. As compared to standard production and freeze/thaw treatment, this grants superior preservation of ECM, leading to enhanced bone formation upon implantation in calvarial defects. Tunability of ECM composition and function is exemplified by modification of the cell line to overexpress vascular endothelial growth factor alpha (VEGF), which results in selective ECM enrichment and superior vasculature recruitment in an ectopic implantation model. hMSC lines culture under perfusion‐flow is pivotal to achieve uniform scaffold decoration with ECM and to streamline the different engineering/decellularization phases in a single environmental chamber. The findings outline the paradigm of combining suitable cell lines and bioreactor systems for generating ECM‐based off‐the‐shelf materials, with custom set of signals designed to activate endogenous regenerative processes.  相似文献   
82.
83.
This paper presents two new strategies for implementing Schapery-type nonlinearly viscoelastic constitutive theories into finite element codes. The first strategy uses the original differential equations that lead to the integral formulation of Schapery-type constitutive theories and Finite Difference (FD) schemes. This strategy is quite different from all the other strategies found in the literature. The second strategy is an improvement of recursive strategies, used by many authors, based on the integral formulation of the constitutive theory. The performances of the new algorithms are compared with those of existing strategies for various load histories and nonlinearities. It is shown that the newly developed strategy based on FD schemes can exhibit quadratic convergence rate when one time step is stored and 4th order convergence rate when two time steps are stored, which is a major improvement over the recursive strategies.  相似文献   
84.
Two-photon polymerization (2PP) allows precise 3D printing at the micrometer scale, and by associating it with magnetic materials, the creation of remotely actuatable micro-structures. Such structures attract a growing interest for biomedical applications, thanks to their size and to the biocompatibility of some photoresist materials. Gelatin methacryloyl (Gel-MA) is one such material, and can be used to create physiological scaffolds for cell culture. Here, the physico-chemical properties of two resins are exploited, the first being a silica-based hybrid polymer, the OrmoComp, and the second a Gel-MA-based hydrogel. A 2PP manufacturing protocol is defined and designed to print both materials in succession as a single structure, which is then linked to a neodymium-iron-boron (NdFeB) magnetic bead for actuation. By this combination, a magnetically deformable 3D culture substrate is created to study cells in an environment that mimics soft, curved, and dynamic properties of tissues in vivo. The structure is actuated via an external magnetic field and bends back and forth along its longest axis. Lastly, preliminary cell culture trials are conducted showing the proliferation of cells on the structures.  相似文献   
85.
86.
Electrocaloric refrigeration is one of the most promising environmentally-friendly technologies to replace current cooling platforms—if a notable electrocaloric effect (ECE) is realized around room temperature where the highest need is. Here, a straight-forward, one-pot chemical modification of P(VDF-ter-TrFE-ter-CTFE) is reported through the controlled introduction of small fractions of double bonds within the backbone that, very uniquely, decreases the lamellar crystalline thickness while, simultaneously, enlarging the crystalline coherence along the a-b plane. This increases the polarizability and polarization without affecting the degree of crystallinity or amending the crystal unit cell—undesirable effects observed with other approaches. Specifically, the permittivity increases by >35%, from 52 to 71 at 1 kHz, and ECE improves by >60% at moderate electric fields. At 40 °C, an adiabatic temperature change >2 K is realized at 60 MV m−1 (>5.5 K at 192 MV m−1), compared to ≈1.3 K for pristine P(VDF-ter-TrFE-ter-CTFE), highlighting the promise of a simple, versatile approach that allows direct film deposition without requiring any post-treatment such as mechanical stretching or high-temperature annealing for achieving the desired performance.  相似文献   
87.
88.
Bright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red‐emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen‐bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen‐bonding drugs like doxorubicin, as shown by steady state and time‐resolved measurements. Fine tuning of the drug release in cancer cells is achieved by adjusting the structure and combination of the fluorophore acidic units. Notably delayed drug delivery is observed by confocal microscopy compared to the entrance of hydrosoluble doxorubicin, demonstrating the absence of undesirable burst release outside the cells by using FONs. Since FON‐constituting fluorophores exhibit a large emission shift from red to green when dissociating in contact with the lipid cellular content, drug delivery could advantageously be followed by dual‐color spectral detection, independently of the drug staining potentiality.  相似文献   
89.
Long-term reservoir management often uses bounds on the reservoir level, between which the operator can work. However, these bounds are not always kept up-to-date with the latest knowledge about the reservoir drainage area, and thus become obsolete. The main difficulty with bounds computation is to correctly take into account the high uncertainty about the inflows to the reservoir. In this article, we propose a methodology to derive minimum bounds while providing formal guarantees about the quality of the obtained solutions. The uncertainty is embedded using either stochastic or robust programming in a model-predictive-control framework. We compare the two paradigms to the existing solution for a case study and find that the obtained solutions vary substantially. By combining the stochastic and the robust approaches, we also assign a confidence level to the solutions obtained by stochastic programming. The proposed methodology is found to be both efficient and easy to implement. It relies on sound mathematical principles, ensuring that a global optimum is reached in all cases.  相似文献   
90.
Mechanical properties,such as the hardness H,Young's modulus E,creep modulus C,and fracture toughness Kc,are essential parameters in the design of hydraulic fracturing systems for prospective shale gas formations.In this study,a practical methodology is presented for obtaining these properties through microindentation experiments combined with quantitative observations of the mineralogical phases using X-ray diffraction(XRD),scanning electron microscopy(SEM) with backscattered electron(BSE)imaging,and energy-dispersive X-ray spectroscopy(EDS) analyses.We apply this method in the case of three types of Longmaxi shales with different mineralogies(i.e.carbonate-,clay-,and quartz-rich,respectively),which allows us to determine the characteristic indentation depth,h_c=8-10 μm,beyond which the mechanical response of the carbonate-rich shale is homogeneous and independent of its complex heterogeneous microstructure.Moreover,exploiting the results of a large number of indentation tests,we demonstrate that the indentation modulus M of the shale increases as a power-law of hardness H,and its creep modulus C increases linearly with H.We also compute the fracture toughness Kc from the indentation data by assuming a perfectly plastic behavior of the sample.Our results are in good agreement with independent measurements of Kc determined by microscratch tests.Finally,further tests on quartz-and clay-rich samples of the Longmaxi shale suggest further variations in the samples' mechanical properties depending on their burial conditions and the mechanical properties of their dominant mineral phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号