首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1366篇
  免费   75篇
  国内免费   5篇
电工技术   13篇
化学工业   460篇
金属工艺   54篇
机械仪表   57篇
建筑科学   46篇
矿业工程   13篇
能源动力   44篇
轻工业   104篇
水利工程   2篇
石油天然气   9篇
无线电   93篇
一般工业技术   252篇
冶金工业   87篇
原子能技术   5篇
自动化技术   207篇
  2023年   17篇
  2022年   109篇
  2021年   137篇
  2020年   39篇
  2019年   46篇
  2018年   65篇
  2017年   50篇
  2016年   78篇
  2015年   64篇
  2014年   67篇
  2013年   103篇
  2012年   72篇
  2011年   89篇
  2010年   54篇
  2009年   51篇
  2008年   60篇
  2007年   42篇
  2006年   27篇
  2005年   34篇
  2004年   31篇
  2003年   22篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   13篇
  1998年   13篇
  1997年   20篇
  1996年   18篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1991年   3篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1981年   4篇
  1980年   7篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1967年   2篇
  1963年   1篇
排序方式: 共有1446条查询结果,搜索用时 15 毫秒
991.
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.  相似文献   
992.
Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.  相似文献   
993.
The efficiency of immunotherapy using monoclonal antibodies that inhibit immune checkpoints has been proven in many clinical studies and well documented by numerous registration approaches. To date, PD-L1 expression on tumor and immune cells, tumor mutation burden (TMB), and microsatellite instability (MSI) are the only validated predictive factors used for the qualification of cancer patients for immunotherapy. However, they are not the ideal predictive factors. No response to immunotherapy could be observed in patients with high PD-L1 expression, TMB, or MSI. On the other hand, the effectiveness of this treatment method also may occur in patients without PD-L1 expression or with low TMB and with microsatellite stability. When considering the best predictive factor, we should remember that the effectiveness of immunotherapy relies on an overly complex process depending on many factors. To specifically stimulate lymphocytes, not only should their activity in the tumor microenvironment be unlocked, but above all, they should recognize tumor antigens. The proper functioning of the anticancer immune system requires the proper interaction of many elements of the specific and non-specific responses. For these reasons, a multi-parameter analysis of the immune system at its different activity levels is considered a very future-oriented predictive marker. Such complex immunological analysis is performed using modern molecular biology techniques. Based on the gene expression studies, we can determine the content of individual immune cells within the tumor, its stroma, and beyond. This includes all cell types from active memory cytotoxic T cells, M1 macrophages, to exhausted T cells, regulatory T cells, and M2 macrophages. In this article, we summarize the possibilities of using an immune system analysis to predict immunotherapy efficacy in cancer patients. Moreover, we present the advantages and disadvantages of immunoprofiling as well as a proposed future direction for this new method of immune system analysis in cancer patients who receive immunotherapy.  相似文献   
994.
There is an urgent need to seek new molecular biomarkers helpful in diagnosing and treating breast cancer. In this elaboration, we performed a molecular analysis of mutations and expression of genes within the PI3K/Akt/mTOR pathway in patients with ductal breast cancer of various malignancy levels. We recognized significant correlations between the expression levels of the studied genes. We also performed a bioinformatics analysis of the data available on the international database TCGA and compared them with our own research. Studies on mutations and expression of genes were conducted using High-Resolution Melt PCR (HRM-PCR), Allele-Specific-quantitative PCR (ASP-qPCR), Real-Time PCR molecular methods in a group of women with ductal breast cancer. Bioinformatics analysis was carried out using web source Ualcan and bc-GenExMiner. In the studied group of women, it was observed that the prevalence of mutations in the studied PIK3CA and AKT1 genes was 29.63%. It was stated that the average expression level of the PIK3CA, PIK3R1, PTEN genes in the group of breast cancer patients is lower in comparison to the control group, while the average expression level of the AKT1 and mTOR genes in the studied group was higher in comparison to the control group. It was also indicated that in the group of patients with mutations in the area of the PIK3CA and AKT1 genes, the PIK3CA gene expression level is statistically significantly lower than in the group without mutations. According to our knowledge, we demonstrate, for the first time, that there is a very strong positive correlation between the levels of AKT1 and mTOR gene expression in the case of patients with mutations and without mutations.  相似文献   
995.
Packed red blood cells (pRBCs), the most commonly transfused blood product, are exposed to environmental disruptions during storage in blood banks. In this study, temporal sequence of changes in the ion exchange in pRBCs was analyzed. Standard techniques commonly used in electrolyte measurements were implemented. The relationship between ion exchange and red blood cells (RBCs) morphology was assessed with use of atomic force microscopy with reference to morphological parameters. Variations observed in the Na+, K+, Cl, H+, HCO3, and lactate ions concentration show a complete picture of singly-charged ion changes in pRBCs during storage. Correlation between the rate of ion changes and blood group type, regarding the limitations of our research, suggested, that group 0 is the most sensitive to the time-dependent ionic changes. Additionally, the impact of irreversible changes in ion exchange on the RBCs membrane was observed in nanoscale. Results demonstrate that the level of ion leakage that leads to destructive alterations in biochemical and morphological properties of pRBCs depend on the storage timepoint.  相似文献   
996.
The electronic nature of 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT) was comprehensively investigated in liquid media at room temperature using steady-state and time-resolved femtosecond transient absorption spectroscopic techniques. The analysis of the linear photophysical and photochemical parameters of HPPT, including steady-state absorption, fluorescence and excitation anisotropy spectra, along with the lifetimes of fluorescence emission and photodecomposition quantum yields, revealed the nature of its large Stokes shift, specific changes in the permanent dipole moments under electronic excitation, weak dipole transitions with partially anisotropic character, and high photostability. Transient absorption spectra of HPPT were obtained with femtosecond resolution and no characteristic solvate relaxation processes in protic (methanol) solvent were revealed. Efficient light amplification (gain) was observed in the fluorescence spectral range of HPPT, but no super-luminescence and lasing phenomena were detected. The electronic structure of HPPT was also analyzed with quantum-chemical calculations using a DFT/B3LYP method and good agreement with experimental data was shown. The development and investigation of new pyrrolo[3,4-c]pyridine derivatives are important due to their promising fluorescent properties and potential for use in physiological applications.  相似文献   
997.
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.  相似文献   
998.
Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein—calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.  相似文献   
999.
Preeclampsia affects about 3–8% of all pregnancies. It represents a complex and multifaceted syndrome with at least several potential pathways leading to the development of disease. The main dogma in preeclampsia is the two-stage model of disease. Stage 1 (placental stage) takes place in early pregnancy and is thought to be impaired placentation due to inadequate trophoblastic invasion of the maternal spiral arteries that leads to reduced placental perfusion and release of numerous biological factors causing endothelial damage and development of acute maternal syndrome with systemic multiorgan failure (stage 2—the onset of maternal clinical symptoms, maternal stage). Recently, in the light of the vast body of evidence, two-stage model of preeclampsia has been updated with a few novel pathways leading to clinical manifestation in the second part of pregnancy. This paper reviews current state of knowledge about pathophysiology of preeclampsia and places particular focus on the recent advances in understanding of uterine artery remodeling alterations, as well as the role of microRNAs in preeclampsia.  相似文献   
1000.
About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a stroke, trauma to the brain, or the use of psychotropic substances. The treatment of epilepsy is mainly based on the administration of anticonvulsants, which the patient must most often use throughout their life. Despite significant progress in research on antiepileptic drugs, about 30% of patients still have drug-resistant epilepsy, which is insensitive to pharmacotherapy used so far. In our recent studies, we have shown that 4-alkyl-5-aryl-1,2,4-triazole-3-thiones act on the voltage-gated sodium channels and exhibit anticonvulsant activity in an MES (maximal electroshock-induced seizure) and 6Hz test in mice. Previous studies have shown their beneficial toxic and pharmacological profile, but their effect on a living organism during chronic use is still unknown. In the presented study, on the basis of the previously conducted tests and the PAMPA (parallel artificial membrane permeability assay) BBB (blood–brain barrier) test, we selected one 1,2,4-triazole-3-thione derivative—TP-315—for further studies aimed at assessing the impact of its chronic use on a living organism. After long-term administration of TP-315 to Albino Swiss mice, its effect on the functional parameters of internal organs was assessed by performing biochemical, morphological, and histopathological examinations. It was also determined whether the tested compound inhibits selected isoforms of the CYP450 enzyme system. On the basis of the conducted tests, it was found that TP-315 does not show nephrotoxic nor hepatotoxic effects and does not cause changes in hematological parameters. In vitro tests showed that TP-315 did not inhibit CYP2B6, CYP2D6, CYP3A4, or CYP3A5 enzymes at the concentration found in the serum of mice subjected to long-term exposure to this compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号