首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   3篇
电工技术   5篇
综合类   1篇
化学工业   61篇
金属工艺   3篇
机械仪表   1篇
建筑科学   5篇
能源动力   4篇
轻工业   12篇
无线电   6篇
一般工业技术   39篇
冶金工业   3篇
原子能技术   5篇
自动化技术   27篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   4篇
  2011年   24篇
  2010年   10篇
  2009年   7篇
  2008年   18篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   11篇
  2003年   5篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有172条查询结果,搜索用时 46 毫秒
31.
A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210–250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300–315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5–15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.  相似文献   
32.
33.
The death of photoreceptor cells is induced by continuous light exposure. However, it is unclear whether light damage was induced in retinal ganglion cells with photosensitivity by transduction of optogenetic genes. In this study, we evaluated the phototoxicities of continuous light exposure on retinal ganglion cells after transduction of the optogenetic gene mVChR1 using an adeno-associated virus vector. Rats were exposed to continuous light for a week, and visually evoked potentials (VEPs) were recorded. The intensities of continuous light (500, 1000, 3000, and 5000 lx) increased substantially after VEP recordings. After the final recording of VEPs, retinal ganglion cells (RGCs) were retrogradely labeled with a fluorescein tracer, FluoroGold, and the number of retinal ganglion cells was counted under a fluorescent microscope. There was no significant reduction in the amplitudes of VEPs and the number of RGCs after exposure to any light intensity. These results indicated that RGCs were photosensitive after the transduction of optogenetic genes and did not induce any phototoxicity by continuous light exposure.  相似文献   
34.
Precise metabolic flux analysis (MFA) by gas chromatography-mass spectrometry (GC-MS) and computer calculation was performed, and the consistency of the estimated results was verified by independently performed nuclear magnetic resonance (NMR) analysis. The precise estimation of flux by the integration method of the mass isotopomer signal, defined as the coefficient of variance (CV) of multiple determination, was investigated, and the results estimated using different data sets with the same magnitude of error were confirmed. The CV of multiple determinations was sufficiently small to discuss and compare the fluxes of a metabolic pathway. The estimated fluxes using the GC-MS data were cross-validated with the NMR data that were independently measured and not used for MFA. The developed method was successfully applied to the MFA of the growth phase of two different glutamate-producing coryneform bacteria, Corynebacterium glutamicum and C. efficiens. The difference in the growth rate between these two bacterial species was discussed while considering the results of MFA, including forward and backward (exchange) fluxes.  相似文献   
35.
All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system   总被引:1,自引:0,他引:1  
Natural photosynthesis, which achieves efficient solar energy conversion through the combined actions of many types of molecules ingeniously arranged in a nanospace, highlights the importance of a technique for site-selective coupling of different materials to realize artificial high-efficiency devices. In view of increasingly serious energy and environmental problems, semiconductor-based artificial photosynthetic systems consisting of isolated photochemical system 1 (PS1), PS2 and the electron-transfer system have recently been developed. However, the direct coupling of the components is crucial for retarding back reactions to increase the reaction efficiency. Here, we report a simple technique for forming an anisotropic CdS-Au-TiO2 nanojunction, in which PS1(CdS), PS2(TiO2) and the electron-transfer system (Au) are spatially fixed. This three-component system exhibits a high photocatalytic activity, far exceeding those of the single- and two-component systems, as a result of vectorial electron transfer driven by the two-step excitation of TiO2 and CdS.  相似文献   
36.
In this paper we analyzed a real fill-type dam, named the Minami-Aiki Dam, to verify a numerical consolidation method with an elastoplastic model for unsaturated soils. The validities were conducted by comparing the analyzed and measured values during construction and impounding. The settlements calculated showed good agreement to those observed. Though the changing patterns of the measured and calculated pore water pressures were similar, the amounts of pore water pressures induced by the self-weights of embankment and the dissipation speeds were different. The earth pressures measured at the bottom of the core zone showed good agreement with those calculated. This method is valid for estimating behavior of fill-type dams during construction and impounding.  相似文献   
37.
Adsorption of a cationic gemini surfactant (1,2-bis(dodecyldimethylammonio) ethane dibromide, 12-2-12) and the corresponding monomeric surfactant (dodecyltrimethylammonium bromide, DTAB) on montmorillonite has been characterized with a combination of adsorption isotherm, interlayer spacing and FT-IR spectroscopic data. Adsolubilization of vitamin E into the adsorbed surfactant layers has also been studied. The adsorption isotherm data reveal that the adsorption of the two surfactants is driven by the two factors: one is the cation exchange that occurs on the interlayer basal planes and the other is the hydrophobic interaction between hydrocarbon chains of the surfactants. Although the adsorbed amount measured in the saturation region (in mol g(-1)) is almost identical for the two surfactants, the conformation of the intercalated surfactant molecules differs significantly from each other. The adsorption of DTAB results in a lateral bilayer arrangement in the limited interlayer space, whereas 12-2-12 gives a normal bilayer arrangement in the expanded interlayer space. Adsolubilization of vitamin E takes place into the adsorbed surfactant layers, and interestingly, all the vitamin E molecules added in the montmorillonite suspensions are hybridized at lower surfactant concentrations due to the great specific surface area of the clay material. Since the maximum adsolubilization amount is usually obtained just below the critical micelle concentration, the gemini surfactant is deemed to be more efficient than the corresponding monomeric one to achieve the great adsolubilization amount.  相似文献   
38.
A novel microfluidic device with an array of analytical chambers was developed in order to perform single-cell-based gene-function analysis. A series of analytical processes was carried out using the device, including electrophoretic manipulation of single cells and electrochemical measurement of gene function. A poly(dimethylsiloxane) microstructure with a microfluidic channel (150 microm in width, 10 microm in height) and an analytical chamber (100 x 20 x 10 microm (3)) were fabricated and aligned on a glass substrate with an array of Au microelectrodes. Two microelectrodes positioned in the analytical chamber were employed as a working electrode for the electrophoretic manipulation of cells and electrochemical measurements. A yeast strain ( Saccharomyces cerevisiae Y190) carrying the beta-galactosidase reporter gene was used to demonstrate that the device could detect the enzyme. Target cells flowing through the main channel were introduced into the chamber by electrophoresis using the ground electrode laid on the main channel. When the cell was treated with 17beta-estradiol, gene expression was triggered to produce beta-galactosidase, catalyzing the hydrolysis of p-aminophenyl-beta- D-galactopyranoside to form p-aminophenol (PAP). The enzymatically generated PAP was detected by cyclic voltammetry and amperometry at the single-cell level in the chamber of the device. Generator-collector mode amperometry was also applied to amplify the current response originating from gene expression in the trapped single cells. After electrochemical measurement, the trapped cells were easily released from the chamber using electrophoretic force.  相似文献   
39.
Abstract

A highly concentrated aqueous solution of sodium polyborate (SPB) was used to treat laminated Japan cedar (Cryptomeria japonica) in order to first develop a fire resistant laminated wood. After the pressure-impregnation of a water borne solution containing 9.78 mol/L of boron, the fire properties were evaluated by cone calorimeter (CCM) and weight loss (WL). The resorcinol formaldehyde resin (RF) laminated wood did not fracture and the adhesive interfaces kept the pieces together even after heating at 750°C for 20 min or with the CCM test using the heat flux of 50 kW/m2 for 20 min. Heat emission for 20 min in the CCM test below 8 MJ/m2 was achieved by a WPG of 53% or more.  相似文献   
40.
Photocatalysts were applied to photocatalytic oxidation of propane in a fixed bed flow reactor. Titanium dioxide exhibited fairly high activity but the deep oxidation was predominant. Silica-supported vanadium oxide (VS) favors the partial oxidation to form propanone and variety of aldehydes and the fast deactivation took place accompanied by reduction of vanadium ions. On the other hand, alkali-ion-modified VS exhibited the highest activity and high selectivity to propanone. The activity was stable because vanadates in alkali-ion-modified VS do not change their structure or are not poisoned by water molecules throughout the reaction. The cleavage of C=C double bond to form aldehydes predominantly proceeded in the case of photo-oxidation of 1-butene over VS while in the case of photo-oxidation of Rb-modified VS, the oxidation of secondary carbon atom to form methyl vinyl ketone is favored. Methyl ethyl ketone was produced at a steady rate over Rb-VS in the photo-oxidation of n-butane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号