首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   4篇
电工技术   12篇
化学工业   21篇
金属工艺   8篇
机械仪表   2篇
无线电   2篇
一般工业技术   13篇
冶金工业   21篇
原子能技术   1篇
  2019年   1篇
  2016年   1篇
  2014年   7篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   11篇
  1997年   7篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有80条查询结果,搜索用时 921 毫秒
71.
The effects of the crystallization temperature, Tc, on the crystal structure as well as its thermal behavior of plasticized poly(l ‐lactic acid) were investigated by means of wide‐angle X‐ray diffraction (WAXD), Fourier‐transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). PLLA blended with succinic acid‐bis[2‐[2‐(2‐methoxyethoxy)ethoxy]ethyl] ester (SAE) showed clear difference in Tc dependence of crystalline form compared to PLLA homopolymer. PLLA with 26 wt % SAE crystallized into orthorhombic α form for Tc above 80°C, while a peculiar disordered structure (mesophase) was obtained for Tc at 40°C. A detailed FTIR analysis of the mesophase of PLLA, focusing on the intra‐ and inter‐chain interaction in the structure, indicated that mesophase had a large degree of disorder in 10/3 helical conformation as well as its packing manner of disordered 10/3 helical chain. Upon heating, mesophase showed a steep exothermic peak at 80°C in DSC thermogram, indicating the phase transformation from mesophase to a form crystal. FTIR results showed that the degree of interchain interaction of C=O in PLLA started to decrease above 60°C, followed by steep increase at 80°C due to the recrystallization into a form. Melt‐recrystallization process in mesophase‐α transformation was clarified. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39762.  相似文献   
72.
It was ever reported in a communication of this journal that the large crystal grains having “bamboo leaf-like (BL)” morphology were produced by a rapid heating of isotactic polypropylene (iPP) from the mesophase. In order to optimize the condition to generate the BL crystals, heating rate effects on the crystallization behavior from the mesophase of iPP have been studied by utilizing a de-polarized light transmission (DPLT) method. The DPLT sensitively detected not only the cold crystallization from the mesophase around 100–120 °C but also the crystal grain growth in a narrow temperature region just below the melting temperature. With increasing the heating rate, both the temperature regions of the cold crystallization and the crystal grain growth shifted toward the higher temperatures. When the heating rate is slow (<20 °C/min), the crystal grain growth was not conspicuous. With increasing the heating rate, the rate of the crystal grain growth increased and showed a maximum when the heating rate is approximately 60–80 °C/min. However, excessively fast heating (>100 °C/min) also suppressed the crystal grain growth.  相似文献   
73.
The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of growth factor stimulation, and recent evidence suggests that G protein-coupled receptors transactivate growth factor receptors to transmit mitogenic effects. In the present study, we report the involvement of epidermal growth factor receptor (EGF-R) in Ang II-induced extracellular signal-regulated kinase (ERK) activation, c-fos gene expression, and DNA synthesis in cardiac fibroblasts. Ang II induced a rapid tyrosine phosphorylation of EGF-R in association with phosphorylation of Shc protein and ERK activation. Specific inhibition of EGF-R function by either a dominant-negative EGF-R mutant or selective tyrphostin AG1478 completely abolished Ang II-induced ERK activation. Induction of c-fos gene expression and DNA synthesis were also abolished by the inhibition of EGF-R function. Calmodulin or tyrosine kinase inhibitors, but not protein kinase C (PKC) inhibitors or downregulation of PKC, completely abolished transactivation of EGF-R by Ang II or the Ca2+ ionophore A23187. Epidermal growth factor (EGF) activity in concentrated supernatant from Ang II-treated cells was not detected, and saturation of culture media with anti-EGF antibody did not affect the Ang II-induced transactivation of EGF-R. Conditioned media in which cells were incubated with Ang II could not induce phosphorylation of EGF-R on recipient cells. Platelet-derived growth factor-beta receptor was not phosphorylated on Ang II stimulation, and Ang II-induced c-jun gene expression was not affected by tyrphostin AG1478. Our results demonstrated that in cardiac fibroblasts Ang II-induced ERK activation and its mitogenic signals are dominantly mediated by EGF-R transactivated in a Ca2+/calmodulin-dependent manner and suggested that the effects of Ang II on cardiac fibroblasts should be interpreted in association with the signaling pathways regulating cellular proliferation and/or differentiation by growth factors.  相似文献   
74.
The magnetooptical measurements of the properties of living cells have a potentially large impact on cellular engineering and biotechnology because the noninvasive approach to applying magnetic fields on cells enables the detection of the dynamics of intracellular components under natural conditions. In this study, we examine a magnetooptical response in smooth muscle cells exposed to a vertical magnetic field of 5 T. The time course of the linearly polarized light transmittance of cells showed both a gradual decrease and fluctuations during exposure at 5 T. Real-time observations of smooth muscle cells and giant rodlike vesicles revealed that magnetic fields cause morphological changes in the cells and vesicles. In addition, results of the optical transmittance measurement of a fish scale indicate that cellular or tissue components are diamagnetically reoriented by magnetic fields.  相似文献   
75.
Using a polymeric precursor synthesized from a mixture of cyclopentasilane, white phosphorus, and 1‐hexyne, we deposited phosphorus‐doped silicon‐rich amorphous silicon carbide (a‐SiC) films via a solution‐based process. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross‐linkage. Therefore, the polymeric precursor is sufficiently pure for effective doping and fabricating semiconducting a‐SiC. This study presents the results of a detailed study of the effect of carbon and phosphorus concentrations on the structural, optical, and electrical properties of a‐SiC films. The lowest activation energy for these films is 0.39 eV, which leads to an optical gap and a dark conductivity of 2.1 eV and 109 Ω cm, respectively. Moreover, these films satisfy the Meyer–Neldel rule for thermally activated conductivity, which indicates that white‐phosphorus doping of solution‐processed a‐SiC produces films with the same characteristics as phosphine‐doped vacuum‐processed a‐SiC.  相似文献   
76.
Aiming at the improvement of mechanical and dielectric properties of poly(vinyl alcohol) (PVA), we prepared composites of PVA and magnesium nitrate hexahydrate. It was found that the composites were very soft and rubber‐like, and the glass transition temperature decreased with increasing the salt concentration. Wide‐angle X‐ray diffraction and small‐angle X‐ray scattering revealed that the crystallites of PVA were destroyed by the additive and it was the cause of the softening. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
77.
Summary: In‐situ rheo small‐angle X‐ray scattering (SAXS), rheo‐light scattering, and rheo‐optical methods were employed to investigate the resultant morphology of polyhydroxybutyrate (PHB) under varying shear flow conditions. Immediately after shear flow application, a highly orientated structure emerged and row nucleation was identified at high shears. Only the initial stages of shish growth (we term the partial shish) were confirmed at excessively high shear conditions. However, only the kebabs were identified at medium shears, below this neither the shish nor kebab were observed. We believe this partial shish is a result of insufficient stability resulting from using such a low‐molecular‐weight species. We conclude that from our observations the shish kebab mechanism appears to display similarities to the Janeschitz‐Kriegl model of precursor formation.

Left: In‐situ rheo‐SAXS two‐dimensional pattern; kebab morphology observed at 100 s?1 for 1 s shear after 160 s. Right: In‐situ rheo‐optical micrograph; PHB row‐nucleated morphology observed at 100 s?1 for 1 s shear after 1 min.  相似文献   

78.
Tamoxifen is a potent antagonist of estrogen, and hepatic steatosis is a frequent complication in adjuvant tamoxifen for breast cancer. Impaired hepatic FA β-oxidation in peroxisomes, microsomes, and mitochondria results in progression of massive hepatic steatosis in estrogen deficiency. This impairment, although latent, is potentially serious: About 3% of the general population in the United States is now suffering from nonalcoholic steatohepatitis associated with obesity and hyperlipidemia. Therefore, in the present study we tried to restore impaired hepatic FA β-oxidation by administering a novel statin, pitavastatin, to aromatase-deficient (Ar−/−) mice defective in intrinsic estrogen synthesis. Northern blot analysis of Ar−/− mice liver revealed a significant restoration of mRNA expression of essential enzymes involved in FA β-oxidation such as very long fatty acyl-CoA synthetase in peroxisome, peroxisomal fatty acyl-CoA oxidase, and medium-chain acyl-CoA dehydrogenase. Severe hepatic steatosis observed in Ar−/− mice substantially regressed. Consistent findings were obtained in the in vitro assays of FA β-oxidation activity. These findings demonstrate that pitavastatin is capable of restoring impaired FA β-oxidation in vivo via the peroxisome proliferator-activated receptor-α-mediated signaling pathway and is potent enough to ameliorate severe hepatic steatosis in mice deficient in intrinsic estrogen.  相似文献   
79.
80.
A novel UV lithographic technique for the patterning of the block copolymer (Pluronic) thin films is developed. The present method is based on UV‐induced water affinity changes in block copolymer films. By water vapor post‐treatment of the film, a difference in water content is established between UV illuminated and unilluminated sections, which can induce an osmotic pressure at the interface. This osmotic pressure drives the migration of Pluronic molecules, resulting in formation of patterns on the block copolymer films. Remarkably, this patterning method requires neither initiators nor polymerizable moieties which are essential for a conventional photolithographic approach. Additionally, the etching process is bypassed, eliminating the use of destructive acids or organic solvents and making this an environmentally friendly patterning protocol. It is reported that Pluronic is photo‐responsive to UV exposure, which causes the dehydration of the PEO‐PPO‐PEO backbone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号