首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   21篇
  国内免费   1篇
电工技术   19篇
综合类   1篇
化学工业   86篇
金属工艺   22篇
机械仪表   3篇
建筑科学   3篇
能源动力   10篇
轻工业   17篇
无线电   26篇
一般工业技术   74篇
冶金工业   35篇
原子能技术   8篇
自动化技术   24篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   13篇
  2015年   4篇
  2014年   7篇
  2013年   21篇
  2012年   10篇
  2011年   21篇
  2010年   15篇
  2009年   27篇
  2008年   14篇
  2007年   13篇
  2006年   9篇
  2005年   14篇
  2004年   11篇
  2003年   10篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   9篇
  1998年   15篇
  1997年   10篇
  1996年   1篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1976年   4篇
排序方式: 共有328条查询结果,搜索用时 93 毫秒
91.
The development of host materials with high performance is essential for fabrication of efficient and stable organic light‐emitting diodes (OLEDs). Although host materials used in OLEDs are typically organics, in this study, it is shown that the organic–inorganic perovskite CH3NH3PbCl3 (MAPbCl3) can be used as a host layer for OLEDs. Vacuum‐evaporated MAPbCl3 films have a wide band gap of about 3 eV and very high and relatively balanced hole and electron mobilities, which are suitable for the host material. Photoluminescence and electroluminescence take place through energy transfer from MAPbCl3 to an organic emitter in films. Incorporation of an MAPbCl3 host layer into OLEDs leads to a reduction of driving voltage and enhancement of external quantum efficiency as compared to devices with a conventional organic host layer. Additionally, OLEDs with an MAPbCl3 host layer demonstrate very good operational stability under continuous current operation. These results can be extensively applied to organic‐ and perovskite‐based optoelectronics.  相似文献   
92.
Zinc-containing hydroxyapatite particles (Zn/HAp) were prepared by an ion exchange reaction process involving hydroxyapatite (HAp) particles with aqueous solutions containing various amounts of zinc nitrate. The Zn2+ ion was partially substituted for the Ca2+ ion position in the HAp lattice, and hence, the obtained samples had changed little in crystallinity, particle size, and specific surface area. Adsorption of bovine serum albumin (BSA) and β2-microglobulin (β2-MG) in solutions containing both BSA and β2-MG was examined. As the Zn2+ ion content in the apatites increased, the adsorbed amount of BSA was almost constant, whereas that of β2-MG increased.  相似文献   
93.
Summary Packed column SFC has been found suitable for the rapid and detailed analysis of the isotactic and syndiotactic oligomers of MMA, when the temperature gradient technique was applied and the modifier was employed. Oligomer components from trimer to 20-mer separated completely. The heptamer fraction collected three times by SFC gave the 1H NMR spectrum of satisfactorily high S/N ratio; the spectrum agreed well with that of the standard sample. Separation by tacticity as well as by molecular weight was observed for the SFC of a mixture of the isotactic and syndiotactic oligomers. The isotactic oligomers had longer retention time than the syndiotactic oligomers of the corresponding degree of polymerization. Part 3: cf. Ute K. Nishimura T, Hatada K, Polym J (1989) 21: 1027  相似文献   
94.
Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault’s rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.  相似文献   
95.
Stretched thin films composed of a thermoplastic elastomer, a polystyrene‐block‐poly(ethylene butylene)‐block‐polystyrene triblock copolymer (SEBS), and polyolefins, poly(ethylene‐co‐ethylacrylate) and poly(ethylene‐co‐propylene), were obtained by blow‐molding, uniaxial stretching, and cooling to room temperature and the gas permeability of the stretched films was investigated. When the as‐blown annealed film was subjected to uniaxial stretching in the machine direction, PO2 and PN2 increased with an increase in the stretching ratio K and approached a constant value at high stretching ratios. In addition, PO2/PN2 decreased gradually with K and approached a value of 2.95–3.0. The reason for this unique gas permeation behavior is that the molecular mobility of poly(ethylene butylene) chains in a direction normal to the film increases and reaches an equilibrium state at around K = 4.5. The change in gas permeability of the stretched films can be explained using a deformation model for the SEBS matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39386.  相似文献   
96.
Organosilica membranes were fabricated using bridged organoalkoxysilanes (bis(triethoxysilyl)methane (BTESM), bis(triethoxysilyl)ethane (BTESE), bis(triethoxysilyl)propane (BTESP), bis(trimethoxysilyl)hexane (BTMSH), bis(triethoxysilyl)benzene (BTESB), and bis(triethoxysilyl)octane (BTESO)) to produce highly permeable molecular sieving membranes. The effect of the organoalkoxysilanes on network pore size and microporous structure was evaluated by examining the molecular size and temperature dependence of gas permeance across a wide range of temperatures. Organosilica membranes showed H2/N2 and H2/CH4 permeance ratios that ranged from 10 to 150, corresponding to network pore size, and both H2 selectivity decreased with an increase in the carbon number between 2 Si atoms. Organosilica membranes showed activated diffusion for He and H2, and a slope of temperature dependence that increased approximate to the increase in the carbon number between 2 Si atoms. The relationship between activation energy and He/H2 permeance ratio for SiO2 and organosilica membranes suggested that the molecular sieving can dominate He and H2 permeation properties via the rigid microporous structure, which was constructed by BTESM and BTESE. With increased in the carbon concentration in silica, polymer chain vibration in organic bridges, which is a kind of solution/diffusion mechanism, can dominate the permeation properties. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4491–4498, 2017  相似文献   
97.
The possible use of an electrode modified with electroactive conductive poly(3-methylthiophene) (PMeT)/Nafion as a chemical sensor was investigated for the voltammetric analysis of Dopamine (DA). The electrochemical behavior of dopamine was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. By using a PMeT-modified glassy carbon (GC/PMeT) electrode, DA and Ascorbic Acid (AA) signals could be separated but the AA at high concentrations still caused significant interference by overlapping the DA peak. In comparison to the GC/PMeT electrode, the glassy carbon (GC/Nafion/PMeT) electrode modified with hybrid film Nafion/PMeT was found to permit a superior separation by shifting the oxidation of AA peak toward the less positive potential. The DPV curves for a mixture of DA and AA at an GC/Nafion/PMeT electrode in a 0.1 M H2SO4 solution showed peaks of DA and AA, at 0.45 and 0.21 V, respectively, indicating that the difference in the oxidation potential was 240 mV. In the 0.1 M H2SO4 solution, the oxidation peak current on the differential pulse voltammograms for the GC/PMeT electrode increased linearly with the concentration of DA in the range 1 × 10−6 to 1 × 10−3 M, and the oxidation peak current on the differential pulse voltammograms for the GC/Nafion/PMeT electrode in the range 5 × 10−7 to 2 × 10−4 M. The DA detection sensitivity of the GC/Nafion/PMeT electrode (26.7 μA μM−1 cm−2) was 22 times higher than that of the GC/PMeT electrode (1.21 μA μM−1 cm−2).  相似文献   
98.
This paper proposes a novel method for deploying a wireless mesh network (WMN) using a group of swarm robots equipped with wireless transceivers. The proposed method uses the rough relative positions of the robots estimated by their Radio Signal Strength Indicators (RSSIs) to deploy the WMN. The employed algorithm consists of three parts, namely, (1) a fully distributed and dynamic role decision method among the robots, (2) an adaptive direction control using the time difference of the RSSIs, and (3) a narrow corridor for the robots to pass by movement function along walls. In our study, we evaluated the performances of the proposed deployment method and a conventional method in a real environment using 12 real robots for simple deployment, and 10 real robots for passing the narrow corridor. The results of the performed experiments showed that (1) the proposed method outperformed the conventional method with regard to the deployment time, power consumption, and the distances traveled by the robots, and (2) the movement function along the walls is effective while passing a narrow corridor unlike any other function.  相似文献   
99.
100.
Different sizes of zeolite nanocrystals were fabricated from zeolite microparticles using a centrifugation-assisted grinding method. The zeolite nanocrystal formation can be attributed to the Al2O3 bowl mill generation of mechanical stress that fractured zeolite microparticles into smaller fragments. In the present study, the smaller fragments had a wide distribution of size and morphology. Therefore, different sizes of zeolite nanocrystals could be recovered from these smaller fragments by varying the centrifugation process. Zeolite nanocrystal product yields were measured by periodically recovering the nanocrystals from the smaller fragments based on milled zeolite powder. The larger crystals of zeolite were typically irregular in shape, whereas the smaller zeolite nanocrystals tended to be spherical. High product yield of the zeolite nanocrystals was obtained by periodically removing nanocrystals from the milled zeolite powder and recycling the large zeolite particles. Thus, the results from this new hybrid process suggest that it can be used to fabricate differing sizes of zeolite nanocrystals. In addition, the size of the recovered zeolite nanocrystal products was narrow, and the initial zeolite nanocrystal structure was not destroyed by the mechanical stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号