首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学工业   7篇
金属工艺   9篇
能源动力   1篇
无线电   1篇
一般工业技术   2篇
冶金工业   1篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2008年   4篇
  2007年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 171 毫秒
11.
Computer‐aided approaches coupled with medicinal chemistry were used to explore novel carbocyclic nucleosides as potential anti‐hepatitis C virus (HCV) agents. Conformational analyses were carried out on 6‐amino‐1H‐pyrazolo[3,4‐d]pyrimidine (6‐APP)‐based carbocyclic nucleoside analogues, which were considered as nucleoside mimetics to act as HCV RNA‐dependent RNA polymerase (RdRp) inhibitors. Structural insight gained from the modeling studies revealed the molecular basis behind these nucleoside mimetics. The rationally chosen 6‐APP analogues were prepared and evaluated for anti‐HCV activity. RdRp SiteMap analysis revealed the presence of a hydrophobic cavity near C7 of the nucleosides; introduction of bulkier substituents at this position enhanced their activity. Herein we report the identification of an iodinated compound with an EC50 value of 6.6 μM as a preliminary anti‐HCV lead.  相似文献   
12.
In this paper, the optical and electrochemical properties of sulphonated nickel phthalocyanine (NiPcSmix) were investigated. The ground state of spectra of NiPcSmix show splitting of Q band in DMF, but the fluorescence spectra have only one band, suggesting that only some component of the sulphonated NiPc fluoresce. Since, the organic materials are described on the basis of molecular orbital energies, i.e. highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) instead of valence band and conduction band. Such energies were estimated from cyclic voltammetry and optical absorption measurements. The dark current–voltage characteristics of ITO/NiPcSmix/Ag device in dark at room temperature shows a rectification behavior. At low voltages, current in forward direction was found to obey the diode equation, i.e. exponential increase in current with applied voltage and the conduction was controlled by thermionic emission mechanism. For relatively higher voltages, the conduction was dominated by a space charge limited conduction mechanism with single trap level of 0.34 eV. The JV characteristics in dark and the comparison of photoaction spectra of the device with the optical absorption spectra of NiPcSmix indicates the formation of Schottky barrier and Ohmic contact at Ag-NiPcSmix and ITO-NiPcSmix, respectively, in ITO/NiPcSmix/Ag device. The junction parameters such as built in potential, potential barrier height, carrier concentration and width of depletion layer were estimated from the capacitance–voltage (CV) measurement. The JV characteristic under illumination shows photovoltaic effect. The power conversion efficiency of the device has been improved upon thermal annealing attributed to the enhancement in the both crystallinity of NiPcSmix and charge carrier mobility due to the thermal treatment. We have also investigated the effect of PEDOT:PSS buffer layer in between ITO and NiPcSmix on electrical and photovoltaic properties of the device.  相似文献   
13.
Autocatalytic ternary Ni-Sn-P, Ni-W-P and quaternary Ni-W-Sn-P films were prepared using an alkaline bath. Plain Ni-P films were also prepared for comparison. Corrosion resistance of the films was evaluated in 3.5% sodium chloride solution in non-deaerated condition by potentiodynamic polarization and electrochemical impedance spectroscopy methods. Deposits were also immersed in 3.5% sodium chloride solution for 7 days. All the coatings attained stable equilibrium potential within 30 minutes in NaCl medium. Lower corrosion current density values were obtained for ternary Ni-Sn-P coatings compared to the plain Ni-P coatings. Ternary Ni-W-P and quaternary Ni-W-Sn-P alloys did not show improved corrosion resistance compared to the ternary Ni-Sn-P coatings. Similar behavior of these coatings was further confirmed by the electrochemical impedance studies. After the potentiodynamic polarization test deposits were examined by scanning electron microscope. It was found that more corrosion occurred for the quaternary deposit compared to other deposits. Energy dispersive analysis of X-ray results indicated that more amount of Fe present on NiWP and NiWSnP coated samples. Similar behavior was confirmed from the optical images of the surfaces obtained for the deposits after the immersion test. The article is published in the original.  相似文献   
14.
The oxide layer formed over AA 2024 using 10 wt.% H2SO4 (plain oxide, PO) was modified by Mn/Mo oxyanions (permanganate/molybdate modified oxide, PMMO) as an alternative to Cr(VI) ions to enhance the corrosion resistance. The corrosion current density values obtained for PMMO was found to be 2.8% and 1.4% of hydrothermal treated oxide (HTO) and PO respectively after 168 h immersion in 3.5% NaCl solution. The electrochemical studies showed the higher barrier layer resistance for PMMO. The improved corrosion behavior of PMMO was observed based on the damage function calculated. Similar observations were confirmed by continuous salt spray test.  相似文献   
15.
This review outlines the development of electroless Ni–P composite coatings. It highlights the method of formation, mechanism of particle incorporation, factors influencing particle incorporation, effect of particle incorporation on the structure, hardness, friction, wear and abrasion resistance, corrosion resistance, high temperature oxidation resistance of electroless Ni–P composite coatings as well as their applications. The improvement in surface properties offered by such composite coatings will have a significant impact on numerous industrial applications and in the future they will secure a more prominent place in the surface engineering of metals and alloys.  相似文献   
16.
Depth-dependent hardness variation of dimethylamine borane-reduced electroless Ni–5?wt-%B deposits has been examined using the nanoindentation technique. The deposits were characterised using ICP-OES, FESEM, XRD and DSC for evaluating the composition, morphology, structure and phase transformation behaviour, respectively. Coatings were also analysed for hardness and wear resistance. The surface of the as-plated deposit exhibits a typical nodular morphology. DSC traces show the presence of a single exothermic peak at 313°C conforming to its phase transformation. X-ray diffraction pattern of as-prepared deposit contains a mixture of amorphous and sharp microcrystalline nickel peaks. Heat-treated coating exhibits improved hardness and wear resistance. Depth-dependent nanohardness profile of as-deposited film neither obeys Nix–Gao nor the Lam–Chong model of indentation.  相似文献   
17.
A series of zirconia supported ammonium salt of molybdophosphoric acid (AMPV) catalysts with and with out vanadium incorporation are prepared in a single step adopting wet impregnation method. These catalysts are characterized by BET surface area, XRD, FT-IR and potentiometric titration. XRD and FT-IR techniques suggest the formation of Keggin ion on zirconia support. The high resolution FT-IR analysis reveals the incorporation of vanadium into the primary structure of Keggin ion. The catalytic functionalities of these catalysts are tested for the aerobic oxidation of benzyl alcohol. The vanadium containing AMPV results in higher selectivity towards the oxidation product compared to the catalyst without vanadium incorporation.  相似文献   
18.
In this study, a comparison in the oxidation and corrosion behavior of Ni/Ni-Co aluminum and alumina-reinforced electrodeposited composites has been made. The developed coatings were characterized for the morphology, structure, microhardness, oxidation, and corrosion resistance. It was found that the incorporation of Al particles in NiCo matrix is higher (9 wt pct) compared to Ni matrix (1 wt pct). In the case of aluminum oxide particles, about 5 and 7 wt pct had been obtained in Ni and NiCo matrices respectively. The difference in the surface morphology was observed with respect to metallic (Al) and inert ceramic (Al2O3) particle incorporation. X-ray diffraction studies showed the presence of predominant Ni (200) reflection in the coatings. Also, peaks corresponding to Al and Al2O3 particles were present. The Ni/NiCo-Al coatings exhibited higher microhardness values at 1273 K (1000 °C) compared to alumina-reinforced coatings, indicating better thermal stability of the former coatings. The NiAl coating showed one and two orders of magnitude improved oxidation resistance compared to NiCoAl and Ni/NiCo-Al2O3 coatings, respectively. It was observed that the Ni-Al composite coating exhibited poor corrosion resistance in 3.5 pct NaCl solution compared to the other coatings studied.  相似文献   
19.
Catalysis Letters - The hydrogenolysis of N-benzylcyclohexylamine (NBCA) was carried out at low temperature and pressure using series of Pd/SiO2 catalysts having Pd contents between 0.5 and 10%....  相似文献   
20.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号