首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   18篇
电工技术   4篇
综合类   1篇
化学工业   153篇
金属工艺   9篇
机械仪表   15篇
建筑科学   5篇
能源动力   19篇
轻工业   6篇
水利工程   4篇
石油天然气   1篇
无线电   27篇
一般工业技术   129篇
冶金工业   10篇
原子能技术   3篇
自动化技术   68篇
  2023年   11篇
  2022年   23篇
  2021年   18篇
  2020年   12篇
  2019年   14篇
  2018年   8篇
  2017年   6篇
  2016年   24篇
  2015年   13篇
  2014年   22篇
  2013年   26篇
  2012年   27篇
  2011年   37篇
  2010年   25篇
  2009年   19篇
  2008年   25篇
  2007年   22篇
  2006年   22篇
  2005年   17篇
  2004年   21篇
  2003年   12篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有454条查询结果,搜索用时 15 毫秒
81.
82.
A process of underwater explosion of a charge near a rigid wall includes three main stages: charge detonation, bubble pulsation and jet formation. A smoothed particle hydrodynamics(SPH) method has natural advantages in solving problems with large deformations and is suitable for simulation of processes of charge detonation and jet formation. On the other hand, a boundary element method(BEM) is highly efficient for modelling of the bubble pulsation process. In this paper, a hybrid algorithm, fully utilizing advantages of both SPH and BEM, was applied to simulate the entire process of free and near-field underwater explosions. First, a numerical model of the free-field underwater explosion was developed, and the entire explosion process–from the charge detonation to the jet formation–was analysed. Second, the obtained numerical results were compared with the original experimental data in order to verify the validity of the presented method. Third, a SPH model of underwater explosion for a column charge near a rigid wall was developed to simulate the detonation process. The results for propagation of a shock wave are in good accordance with the physical observations. After that, the SPH results were employed as initial conditions for the BEM to simulate the bubble pulsation. The obtained numerical results show that the bubble expanded at first and then shrunk due to a differences of pressure levels inside and outside it. Here, a good agreement between the numerical and experimental results for the shapes, the maximum radius and the movement of the bubble proved the effectiveness of the developed numerical model. Finally, the BEM results for a stage when an initial jet was formed were used as initial conditions for the SPH method to simulate the process of jet formation and its impact on the rigid wall. The numerical results agreed well with the experimental data, verifying the feasibility and suitability of the hybrid algorithm. Besides, the results show that, due to the effect of the Bjerknes force, a jet with a high speed was formed that may cause local damage to underwater structures.  相似文献   
83.
Small‐molecule organic semiconductors are used in a wide spectrum of applications, ranging from organic light emitting diodes to organic photovoltaics. However, the low carrier mobility severely limits their potential, e.g., for large area devices. A number of factors determine mobility, such as molecular packing, electronic structure, dipole moment, and polarizability. Presently, quantitative ab initio models to assess the influence of these molecule‐dependent properties are lacking. Here, a multiscale model is presented, which provides an accurate prediction of experimental data over ten orders of magnitude in mobility, and allows for the decomposition of the carrier mobility into molecule‐specific quantities. Molecule‐specific quantitative measures are provided how two single molecule properties, the dependence of the orbital energy on conformation, and the dipole‐induced polarization determine mobility for hole‐transport materials. The availability of first‐principles based models to compute key performance characteristics of organic semiconductors may enable in silico screening of numerous chemical compounds for the development of highly efficient optoelectronic devices.  相似文献   
84.
Pastirk I  Zhu X  Lozovoy VV  Dantus M 《Applied optics》2007,46(19):4041-4045
Phase-shaped femtosecond laser pulses and mass spectrometry were implemented as a tool for improving molecular identification. We demonstrate that the specific lines in the mass spectra of several chemical warfare simulants are sensitive to the phase characteristics of the incident laser field. The deviation in the relative yield of fragment ions observed upon pulse shaping (enhancement or suppression) adds a new dimension to mass spectrometry that improves molecular identification and can be used to quantitatively analyze mixtures of isomers.  相似文献   
85.
Soloviev VY 《Applied optics》2007,46(14):2778-2784
Three-dimensional bioluminescence imaging is an emerging technique that can be used to monitor molecular events in intact living systems. The inverse problem of 3D bioluminescence imaging does not have a unique solution because it requires reconstruction of a 3D source function from a 2D one. A novel approach that addresses this problem with the aid of a simple experimental setup and solves the uniqueness problem of the solution for a monochromatic measurement set is suggested here. The approach is verified numerically by reconstructing bioluminescent objects of various shapes embedded inside highly scattering media, such as biologi?al tissue.  相似文献   
86.
Depolarization lidars are widely used to study clouds and aerosols because of their ability to discriminate between spherical particles and particles of irregular shape. Depolarization of cloud backscattered radiation can be caused also by multiple scattering events. One of the ways to gain information about particle parameters in the presence of strong multiple scattering is the measurement of radial and azimuthal dependence of the polarization patterns in the focal plane of receiver. We present an algorithm for the calculation of corresponding polarized patterns in the frame of double scattering approximation. Computations are performed for various receiver field of views, for different parameters of the scattering geometry, e.g., cloud base and sounding depth, as well as for different values of cloud particle size and refractive index. As the spatial distribution of cross-polarized radiation is of cross shape and rotated at 45 degrees with respect to laser polarization, the use of a properly oriented cross-shaped mask in the receiver focal plane allows the removal of a significant portion of the depolarized component of the backscattered radiation produced by double scattering. This has been verified experimentally based on cloud depolarization measurements performed at different orientations of the cross-shaped mask. Results obtained from measurements are in agreement with model predictions.  相似文献   
87.
Spontaneous emission measurements are discussed for the Swings transitions of the C(3) radical in laser-generated graphite plasma, and the spectroscopy of the C(3) radical in carbon vapor and plasma is summarized. A review is given of some theoretical calculations and emission spectroscopic investigations are presented. Time-averaged, laser-induced optical breakdown spectra are reported from Nd:YAG laser generated graphite microplasma. In 200-300 Torr of argon and helium, and depending on the specific experimental configuration, a weak emission continuum is observed centered at 400 nm when using a laser fluence of typically 1 J/cm(2). Such continua were not detected in our previous experiments using focused laser radiation. The possibilities for the origin of this continuum are considered.  相似文献   
88.
Hypoglycemia has been recognized as a risk factor for diabetic vascular complications and cognitive decline, but the molecular mechanisms of the effect of hypoglycemia on target organs are not fully understood. In this work, gene networks of hypoglycemia and cardiovascular disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, cognitive decline, and Alzheimer’s disease were reconstructed using ANDSystem, a text-mining-based tool. The gene network of hypoglycemia included 141 genes and 2467 interactions. Enrichment analysis of Gene Ontology (GO) biological processes showed that the regulation of insulin secretion, glucose homeostasis, apoptosis, nitric oxide biosynthesis, and cell signaling are significantly enriched for hypoglycemia. Among the network hubs, INS, IL6, LEP, TNF, IL1B, EGFR, and FOS had the highest betweenness centrality, while GPR142, MBOAT4, SLC5A4, IGFBP6, PPY, G6PC1, SLC2A2, GYS2, GCGR, and AQP7 demonstrated the highest cross-talk specificity. Hypoglycemia-related genes were overrepresented in the gene networks of diabetic complications and comorbidity; moreover, 14 genes were mutual for all studied disorders. Eleven GO biological processes (glucose homeostasis, nitric oxide biosynthesis, smooth muscle cell proliferation, ERK1 and ERK2 cascade, etc.) were overrepresented in all reconstructed networks. The obtained results expand our understanding of the molecular mechanisms underlying the deteriorating effects of hypoglycemia in diabetes-associated vascular disease and cognitive dysfunction.  相似文献   
89.
The kinetics of step polycondensation is described on the basis of the classical branching theory. A simple method is proposed for calculation of the average longest length (L) of the linear chain in a crosslinked molecule under arbitrary functionalities of original monomers. A viscosity of the system is represented as a product of a structure factor by a friction factor. The latter was taken as the Arrhenius exponent. The structure factor was chosen in the form of a power function of L. The method has been used for the approximation of the viscosity of phenol-formaldehyde resin in the course of curing by boron oxide. An activation energy of 11.8 kcal/mol was found by the method of a best matching of the structure factor for the different viscosity kinetic isotherms in the scale of a reduced time of the reaction. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 319–328, 1997  相似文献   
90.
Subramanian H  Pradhan P  Kim YL  Liu Y  Li X  Backman V 《Applied optics》2006,45(24):6292-6300
Constructive interference between coherent waves traveling time-reversed paths in a random medium gives rise to the enhancement of light scattering observed in directions close to backscattering. This phenomenon is known as enhanced backscattering (EBS). According to diffusion theory, the angular width of an EBS cone is proportional to the ratio of the wavelength of light lambda to the transport mean-free-path length l(s)* of a random medium. In biological media a large l(s)* approximately 0.5-2 mm > lambda results in an extremely small (approximately 0.001 degrees ) angular width of the EBS cone, making the experimental observation of such narrow peaks difficult. Recently, the feasibility of observing EBS under low spatial coherence illumination (spatial coherence length Lsc < l(s)*) was demonstrated. Low spatial coherence behaves as a spatial filter rejecting longer path lengths and thus resulting in an increase of more than 100 times in the angular width of low coherence EBS (LEBS) cones. However, a conventional diffusion approximation-based model of EBS has not been able to explain such a dramatic increase in LEBS width. We present a photon random walk model of LEBS by using Monte Carlo simulation to elucidate the mechanism accounting for the unprecedented broadening of the LEBS peaks. Typically, the exit angles of the scattered photons are not considered in modeling EBS in the diffusion regime. We show that small exit angles are highly sensitive to low-order scattering, which is crucial for accurate modeling of LEBS. Our results show that the predictions of the model are in excellent agreement with the experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号