首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   76篇
电工技术   2篇
化学工业   309篇
金属工艺   8篇
机械仪表   13篇
建筑科学   27篇
能源动力   20篇
轻工业   169篇
水利工程   4篇
石油天然气   2篇
无线电   31篇
一般工业技术   97篇
冶金工业   9篇
自动化技术   76篇
  2024年   2篇
  2023年   19篇
  2022年   46篇
  2021年   99篇
  2020年   37篇
  2019年   28篇
  2018年   42篇
  2017年   27篇
  2016年   44篇
  2015年   30篇
  2014年   34篇
  2013年   58篇
  2012年   36篇
  2011年   58篇
  2010年   32篇
  2009年   34篇
  2008年   30篇
  2007年   18篇
  2006年   21篇
  2005年   9篇
  2004年   11篇
  2003年   13篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   9篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   2篇
  1980年   1篇
排序方式: 共有767条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
The selective oxidation of alkane and olefin moieties are reactions of fundamental importance in both chemical synthesis and biology. Nature efficiently catalyzes the oxidation of hydrocarbons using iron-dependent enzymes, which operate through the mediation of oxoiron(IV) or oxoiron(V) species. In the quest for chemo, regio and stereoselective transformations akin to those taking place in nature, bioinspired iron catalysts have been developed and understanding their mechanism of action has become a particularly relevant area of research. While a prominent advance in the preparation and characterization of oxoiron(IV) species has been accomplished, oxoiron(V) species remain exceedingly rare, presumably because the high reactivity that makes them particularly interesting also makes them difficult to observe. This review summarizes the advances in the field, focusing in synthetic systems for which the oxoiron(V) species relevant in these transformations have been directly detected and spetroscopically characterized.  相似文献   
85.
L-NG-nitroarginine (LNNA), an analog of L-arginine, is a competitive inhibitor of nitric oxide synthase which causes the selective reduction of blood flow to tumor cells. Despite the potential of LNNA to function as an adjuvant in cancer therapies, its poor solubility and stability have hindered the development of an injectable formulation of LNNA that is suitable for human administration. This work, for the first time, details a systematic study on the determination of equilibrium Ka constants and the rate law of LNNA degradation. The four Ka values of LNNA were determined to be 1.03, 1.10?×?10?2, 2.51?×?10?10, and 1.33?×?10?13 M. From the kinetic and equilibrium studies, we have shown that the deprotonated form of LNNA is the main form of LNNA that undergoes degradation in aqueous media at room temperature. The rate law of LNNA degradation was found to be first order with respect to OH? concentration and first order with respect to LNNA? concentration. The rate constant at 25?°C and 1?atm was determined to be 0.04453 M?1min?1. A base catalyzed mechanism of LNNA degradation was proposed based on the kinetic study. The mechanism was found to be very useful in explaining the discrepancies and changes of the rate law at different pH values. It is thus recommended that LNNA should be formulated as a concentrated solution in acidic conditions for maximum chemical stability during storage and be diluted with a basic solution to near physiological pH just before administration.  相似文献   
86.
Here, the operation of a field‐effect transistor based on a single InAs nanowire gated by an ionic liquid is reported. Liquid gating yields very efficient carrier modulation with a transconductance value 30 times larger than standard back gating with the SiO2/Si++ substrate. Thanks to this wide modulation, the controlled evolution from semiconductor to metallic‐like behavior in the nanowire is shown. This work provides the first systematic study of ionic‐liquid gating in electronic devices based on individual III–V semiconductor nanowires: this architecture opens the way to a wide range of fundamental and applied studies from the phase transitions to bioelectronics.  相似文献   
87.
The fabrication of 2D systems for electronic devices is not straightforward, with top‐down low‐yield methods often employed leading to irregular nanostructures and lower quality devices. Here, a simple and reproducible method to trigger self‐assembly of arrays of high aspect‐ratio chiral copper heterostructures templated by the structural anisotropy in black phosphorus (BP) nanosheets is presented. Using quantitative atomic resolution aberration‐corrected scanning transmission electron microscopy imaging, in situ heating transmission electron microscopy and electron energy‐loss spectroscopy arrays of heterostructures forming at speeds exceeding 100 nm s?1 and displaying long‐range order over micrometers are observed. The controlled instigation of the self‐assembly of the Cu heterostructures embedded in BP is achieved using conventional electron beam lithography combined with site specific placement of Cu nanoparticles. Density functional theory calculations are used to investigate the atomic structure and suggest a metallic nature of the Cu heterostructures grown in BP. The findings of this new hybrid material with unique dimensionality, chirality, and metallic nature and its triggered self‐assembly open new and exciting opportunities for next generation, self‐assembling devices.  相似文献   
88.
Journal of Materials Science - Single crystals of lead-free halide double perovskite Cs2AgBiBr6 sensor material manifest a remarkable potential for application in radiation detection and imaging....  相似文献   
89.
In the last decades, advances in interactive information technologies have facilitated collaborative fiction writing, which has become widespread and large-scale. This paper proposes a framework to analyze collaborative storytelling systems, made of a set of parameters divided into six conceptual areas. Four of them relate to the systems and two (process and output) to the results of the collaboration. Through this framework we can study more precisely these different factors of the systems, their interplay, and how they impact the creators’ performance. We also present a controlled extended-duration field study on collaborative storytelling, and we use this framework to comparatively analyze these observations and other relevant experiences in the field of co-creation of shared narrative spaces. As a result, we propose a human-information interaction model for collaborative narrative systems, intended to better support co-creation and address the barriers of this kind of systems turning them into new opportunities for collaboration.  相似文献   
90.
The multidomain, catalytically self‐sufficient cytochrome P450 BM‐3 from Bacillus megaterium (P450BM3) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus‐guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3. Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild‐type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half‐lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD‐binding domain and that the optimal temperature (Topt) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号